Implementation of the BERT. Official pre-trained models could be loaded for feature extraction and prediction.
pip install keras-bert
In feature extraction demo, you should be able to get the same extraction results as the official model chinese_L-12_H-768_A-12
. And in prediction demo, the missing word in the sentence could be predicted.
The extraction demo shows how to convert to a model that runs on TPU.
The classification demo shows how to apply the model to simple classification tasks.
The Tokenizer
class is used for splitting texts and generating indices:
from keras_bert import Tokenizer token_dict = { '[CLS]': 0, '[SEP]': 1, 'un': 2, '##aff': 3, '##able': 4, '[UNK]': 5, } tokenizer = Tokenizer(token_dict) print(tokenizer.tokenize('unaffable')) # The result should be `['[CLS]', 'un', '##aff', '##able', '[SEP]']` indices, segments = tokenizer.encode('unaffable') print(indices) # Should be `[0, 2, 3, 4, 1]` print(segments) # Should be `[0, 0, 0, 0, 0]` print(tokenizer.tokenize(first='unaffable', second='钢')) # The result should be `['[CLS]', 'un', '##aff', '##able', '[SEP]', '钢', '[SEP]']` indices, segments = tokenizer.encode(first='unaffable', second='钢', max_len=10) print(indices) # Should be `[0, 2, 3, 4, 1, 5, 1, 0, 0, 0]` print(segments) # Should be `[0, 0, 0, 0, 0, 1, 1, 0, 0, 0]`
import keras from keras_bert import get_base_dict, get_model, compile_model, gen_batch_inputs # A toy input example sentence_pairs = [ [['all', 'work', 'and', 'no', 'play'], ['makes', 'jack', 'a', 'dull', 'boy']], [['from', 'the', 'day', 'forth'], ['my', 'arm', 'changed']], [['and', 'a', 'voice', 'echoed'], ['power', 'give', 'me', 'more', 'power']], ] # Build token dictionary token_dict = get_base_dict() # A dict that contains some special tokens for pairs in sentence_pairs: for token in pairs[0] + pairs[1]: if token not in token_dict: token_dict[token] = len(token_dict) token_list = list(token_dict.keys()) # Used for selecting a random word # Build & train the model model = get_model( token_num=len(token_dict), head_num=5, transformer_num=12, embed_dim=25, feed_forward_dim=100, seq_len=20, pos_num=20, dropout_rate=0.05, ) compile_model(model) model.summary() def _generator(): while True: yield gen_batch_inputs( sentence_pairs, token_dict, token_list, seq_len=20, mask_rate=0.3, swap_sentence_rate=1.0, ) model.fit_generator( generator=_generator(), steps_per_epoch=1000, epochs=100, validation_data=_generator(), validation_steps=100, callbacks=[ keras.callbacks.EarlyStopping(monitor='val_loss', patience=5) ], ) # Use the trained model inputs, output_layer = get_model( token_num=len(token_dict), head_num=5, transformer_num=12, embed_dim=25, feed_forward_dim=100, seq_len=20, pos_num=20, dropout_rate=0.05, training=False, # The input layers and output layer will be returned if `training` is `False` trainable=False, # Whether the model is trainable. The default value is the same with `training` output_layer_num=4, # The number of layers whose outputs will be concatenated as a single output. # Only available when `training` is `False`. )
AdamWarmup
optimizer is provided for warmup and decay. The learning rate will reach lr
in warmpup_steps
steps, and decay to min_lr
in decay_steps
steps. There is a helper function calc_train_steps
for calculating the two steps:
import numpy as np from keras_bert import AdamWarmup, calc_train_steps train_x = np.random.standard_normal((1024, 100)) total_steps, warmup_steps = calc_train_steps( num_example=train_x.shape[0], batch_size=32, epochs=10, warmup_proportion=0.1, ) optimizer = AdamWarmup(total_steps, warmup_steps, lr=1e-3, min_lr=1e-5)
Several download urls has been added. You can get the downloaded and uncompressed path of a checkpoint by:
from keras_bert import get_pretrained, PretrainedList, get_checkpoint_paths model_path = get_pretrained(PretrainedList.multi_cased_base) paths = get_checkpoint_paths(model_path) print(paths.config, paths.checkpoint, paths.vocab)
You can use helper function extract_embeddings
if the features of tokens or sentences (without further tuning) are what you need. To extract the features of all tokens:
from keras_bert import extract_embeddings model_path = 'xxx/yyy/uncased_L-12_H-768_A-12' texts = ['all work and no play', 'makes jack a dull boy~'] embeddings = extract_embeddings(model_path, texts)
The returned result is a list with the same length as texts. Each item in the list is a numpy array truncated by the length of the input. The shapes of outputs in this example are (7, 768)
and (8, 768)
.
When the inputs are paired-sentences, and you need the outputs of NSP
and max-pooling of the last 4 layers:
from keras_bert import extract_embeddings, POOL_NSP, POOL_MAX model_path = 'xxx/yyy/uncased_L-12_H-768_A-12' texts = [ ('all work and no play', 'makes jack a dull boy'), ('makes jack a dull boy', 'all work and no play'), ] embeddings = extract_embeddings(model_path, texts, output_layer_num=4, poolings=[POOL_NSP, POOL_MAX])
There are no token features in the results. The outputs of NSP
and max-pooling will be concatenated with the final shape (768 x 4 x 2,)
.
The second argument in the helper function is a generator. To extract features from file:
import codecs from keras_bert import extract_embeddings model_path = 'xxx/yyy/uncased_L-12_H-768_A-12' with codecs.open('xxx.txt', 'r', 'utf8') as reader: texts = map(lambda x: x.strip(), reader) embeddings = extract_embeddings(model_path, texts)
tensorflow.python.keras
Add TF_KERAS=1
to environment variables to use tensorflow.python.keras
.