MXNet

API

 mxnet / mxnet.rtc


mxnet.rtc

Interface to runtime cuda kernel compile module.

Classes

CudaKernel(handle, name, is_ndarray, dtypes)

Constructs CUDA kernel.

CudaModule(source[, options, exports])

Compile and run CUDA code from Python.

class mxnet.rtc.CudaKernel(handle, name, is_ndarray, dtypes)[source]

Bases: object

Constructs CUDA kernel. Should be created by CudaModule.get_kernel, not intended to be used by users.

Methods

launch(args, ctx, grid_dims, block_dims[, …])

Launch cuda kernel.

launch(args, ctx, grid_dims, block_dims, shared_mem=0)[source]

Launch cuda kernel.

Parameters
  • args (tuple of NDArray or numbers) – List of arguments for kernel. NDArrays are expected for pointer types (e.g. float*, double*) while numbers are expected for non-pointer types (e.g. int, float).

  • ctx (Context) – The context to launch kernel on. Must be GPU context.

  • grid_dims (tuple of 3 integers) – Grid dimensions for CUDA kernel.

  • block_dims (tuple of 3 integers) – Block dimensions for CUDA kernel.

  • shared_mem (integer, optional) – Size of dynamically allocated shared memory. Defaults to 0.

class mxnet.rtc.CudaModule(source, options=(), exports=())[source]

Bases: object

Compile and run CUDA code from Python.

In CUDA 7.5, you need to prepend your kernel definitions with ‘extern “C”’ to avoid name mangling:

source = r'''
extern "C" __global__ void axpy(const float *x, float *y, float alpha) {
    int i = threadIdx.x + blockIdx.x * blockDim.x;
    y[i] += alpha * x[i];
}
'''
module = mx.rtc.CudaModule(source)
func = module.get_kernel("axpy", "const float *x, float *y, float alpha")
x = mx.nd.ones((10,), ctx=mx.gpu(0))
y = mx.nd.zeros((10,), ctx=mx.gpu(0))
func.launch([x, y, 3.0], mx.gpu(0), (1, 1, 1), (10, 1, 1))
print(y)

Methods

get_kernel(name, signature)

Get CUDA kernel from compiled module.

Starting from CUDA 8.0, you can instead export functions by name. This also allows you to use templates:

source = r'''
template<typename DType>
__global__ void axpy(const DType *x, DType *y, DType alpha) {
    int i = threadIdx.x + blockIdx.x * blockDim.x;
    y[i] += alpha * x[i];
}
'''
module = mx.rtc.CudaModule(source, exports=['axpy<float>', 'axpy<double>'])
func32 = module.get_kernel("axpy<float>", "const float *x, float *y, float alpha")
x = mx.nd.ones((10,), dtype='float32', ctx=mx.gpu(0))
y = mx.nd.zeros((10,), dtype='float32', ctx=mx.gpu(0))
func32.launch([x, y, 3.0], mx.gpu(0), (1, 1, 1), (10, 1, 1))
print(y)

func64 = module.get_kernel("axpy<double>", "const double *x, double *y, double alpha")
x = mx.nd.ones((10,), dtype='float64', ctx=mx.gpu(0))
y = mx.nd.zeros((10,), dtype='float64', ctx=mx.gpu(0))
func32.launch([x, y, 3.0], mx.gpu(0), (1, 1, 1), (10, 1, 1))
print(y)
Parameters
  • source (str) – Complete source code.

  • options (tuple of str) – Compiler flags. For example, use “-I/usr/local/cuda/include” to add cuda headers to include path.

  • exports (tuple of str) – Export kernel names.

get_kernel(name, signature)[source]

Get CUDA kernel from compiled module.

Parameters
  • name (str) – String name of the kernel.

  • signature (str) –

    Function signature for the kernel. For example, if a kernel is declared as:

    extern "C" __global__ void axpy(const float *x, double *y, int alpha)
    

    Then its signature should be:

    const float *x, double *y, int alpha
    

    or:

    const float *, double *, int
    

    Note that * in signature marks an argument as array and const marks an argument as constant (input) array.

Returns

CUDA kernels that can be launched on GPUs.

Return type

CudaKernel


此页内容是否对您有帮助