API

 _modules/torch.cuda


Source code for torch.cuda

r"""
This package adds support for CUDA tensor types, that implement the same
function as CPU tensors, but they utilize GPUs for computation.

It is lazily initialized, so you can always import it, and use
:func:`is_available()` to determine if your system supports CUDA.

:ref:`cuda-semantics` has more details about working with CUDA.
"""

import contextlib
import os
import torch
import traceback
import warnings
import threading
from typing import List, Optional, Tuple, Union
from ._utils import _get_device_index, _dummy_type
from .streams import Stream, Event
from .. import device as _device
import torch._C

try:
    from torch._C import _cudart
except ImportError:
    _cudart = None

_initialized = False
_tls = threading.local()
_initialization_lock = threading.Lock()
_queued_calls = []  # don't invoke these until initialization occurs
_is_in_bad_fork = getattr(torch._C, "_cuda_isInBadFork", lambda: False)
_device_t = Union[_device, str, int]

# Define dummy _CudaDeviceProperties type if PyTorch was compiled without CUDA
if hasattr(torch._C, '_CudaDeviceProperties'):
    _CudaDeviceProperties = torch._C._CudaDeviceProperties
else:
    _CudaDeviceProperties = _dummy_type('_CudaDeviceProperties')

# Global variables dynamically populated by native code
has_magma: bool = False
has_half: bool = False
default_generators: Tuple[torch._C.Generator] = ()

[docs]def is_available() -> bool: r"""Returns a bool indicating if CUDA is currently available.""" if not hasattr(torch._C, '_cuda_getDeviceCount'): return False # This function never throws and returns 0 if driver is missing or can't # be initialized return torch._C._cuda_getDeviceCount() > 0
def _sleep(cycles): torch._C._cuda_sleep(cycles) def _check_capability(): incorrect_binary_warn = """ Found GPU%d %s which requires CUDA_VERSION >= %d to work properly, but your PyTorch was compiled with CUDA_VERSION %d. Please install the correct PyTorch binary using instructions from https://pytorch.org """ old_gpu_warn = """ Found GPU%d %s which is of cuda capability %d.%d. PyTorch no longer supports this GPU because it is too old. The minimum cuda capability that we support is 3.5. """ if torch.version.cuda is not None: # on ROCm we don't want this check CUDA_VERSION = torch._C._cuda_getCompiledVersion() for d in range(device_count()): capability = get_device_capability(d) major = capability[0] minor = capability[1] name = get_device_name(d) if capability == (3, 0) or major < 3: warnings.warn(old_gpu_warn % (d, name, major, capability[1])) elif CUDA_VERSION <= 9000 and major >= 7 and minor >= 5: warnings.warn(incorrect_binary_warn % (d, name, 10000, CUDA_VERSION)) def _check_cubins(): incompatible_device_warn = """ {} with CUDA capability sm_{} is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities {}. If you want to use the {} GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/ """ if torch.version.cuda is None: # on ROCm we don't want this check return arch_list = get_arch_list() if len(arch_list) == 0: return supported_sm = [int(arch.split('_')[1]) for arch in arch_list if 'sm_' in arch] for idx in range(device_count()): cap_major, cap_minor = get_device_capability(idx) # NVIDIA GPU compute architectures are backward compatible within major version supported = any([sm // 10 == cap_major for sm in supported_sm]) if not supported: device_name = get_device_name(idx) capability = cap_major * 10 + cap_minor warnings.warn(incompatible_device_warn.format(device_name, capability, " ".join(arch_list), device_name))
[docs]def is_initialized(): r"""Returns whether PyTorch's CUDA state has been initialized.""" return _initialized and not _is_in_bad_fork()
def _lazy_call(callable): if is_initialized(): callable() else: # Don't store the actual traceback to avoid memory cycle _queued_calls.append((callable, traceback.format_stack())) _lazy_call(_check_capability) _lazy_call(_check_cubins) class DeferredCudaCallError(Exception): pass
[docs]def init(): r"""Initialize PyTorch's CUDA state. You may need to call this explicitly if you are interacting with PyTorch via its C API, as Python bindings for CUDA functionality will not be available until this initialization takes place. Ordinary users should not need this, as all of PyTorch's CUDA methods automatically initialize CUDA state on-demand. Does nothing if the CUDA state is already initialized. """ _lazy_init()
def _lazy_init(): global _initialized, _queued_calls if is_initialized() or hasattr(_tls, 'is_initializing'): return with _initialization_lock: # We be double-checked locking, boys! This is OK because # the above test was GIL protected anyway. The inner test # is for when a thread blocked on some other thread which was # doing the initialization; when they get the lock, they will # find there is nothing left to do. if is_initialized(): return # It is important to prevent other threads from entering _lazy_init # immediately, while we are still guaranteed to have the GIL, because some # of the C calls we make below will release the GIL if _is_in_bad_fork(): from sys import version_info if version_info < (3, 4): msg = ("To use CUDA with multiprocessing, you must use Python " "3.4+ and the 'spawn' start method") else: msg = ("To use CUDA with multiprocessing, you must use the " "'spawn' start method") raise RuntimeError( "Cannot re-initialize CUDA in forked subprocess. " + msg) if not hasattr(torch._C, '_cuda_getDeviceCount'): raise AssertionError("Torch not compiled with CUDA enabled") if _cudart is None: raise AssertionError( "libcudart functions unavailable. It looks like you have a broken build?") # This function throws if there's a driver initialization error, no GPUs # are found or any other error occurs torch._C._cuda_init() # Some of the queued calls may reentrantly call _lazy_init(); # we need to just return without initializing in that case. # However, we must not let any *other* threads in! _tls.is_initializing = True try: for queued_call, orig_traceback in _queued_calls: try: queued_call() except Exception as e: msg = (f"CUDA call failed lazily at initialization with error: {str(e)}\n\n" f"CUDA call was originally invoked at:\n\n{orig_traceback}") raise DeferredCudaCallError(msg) from e finally: delattr(_tls, 'is_initializing') _initialized = True def cudart(): _lazy_init() return _cudart class cudaStatus(object): SUCCESS: int = 0 ERROR_NOT_READY: int = 34 class CudaError(RuntimeError): def __init__(self, code: int) -> None: msg = _cudart.cudaGetErrorString(_cudart.cudaError(code)) super(CudaError, self).__init__('{0} ({1})'.format(msg, code)) def check_error(res: int) -> None: if res != _cudart.cudaError.success: raise CudaError(res)
[docs]class device(object): r"""Context-manager that changes the selected device. Arguments: device (torch.device or int): device index to select. It's a no-op if this argument is a negative integer or ``None``. """ def __init__(self, device): self.idx = _get_device_index(device, optional=True) self.prev_idx = -1 def __enter__(self): if self.idx == -1: return self.prev_idx = torch._C._cuda_getDevice() if self.prev_idx != self.idx: torch._C._cuda_setDevice(self.idx) _lazy_init() def __exit__(self, *args): if self.prev_idx != self.idx: torch._C._cuda_setDevice(self.prev_idx) return False
[docs]class device_of(device): r"""Context-manager that changes the current device to that of given object. You can use both tensors and storages as arguments. If a given object is not allocated on a GPU, this is a no-op. Arguments: obj (Tensor or Storage): object allocated on the selected device. """ def __init__(self, obj): idx = obj.get_device() if obj.is_cuda else -1 super(device_of, self).__init__(idx)
[docs]def set_device(device: _device_t) -> None: r"""Sets the current device. Usage of this function is discouraged in favor of :any:`device`. In most cases it's better to use ``CUDA_VISIBLE_DEVICES`` environmental variable. Arguments: device (torch.device or int): selected device. This function is a no-op if this argument is negative. """ device = _get_device_index(device) if device >= 0: torch._C._cuda_setDevice(device)
[docs]def get_device_name(device: Optional[_device_t] = None) -> str: r"""Gets the name of a device. Arguments: device (torch.device or int, optional): device for which to return the name. This function is a no-op if this argument is a negative integer. It uses the current device, given by :func:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). """ return get_device_properties(device).name
[docs]def get_device_capability(device: Optional[_device_t] = None) -> Tuple[int, int]: r"""Gets the cuda capability of a device. Arguments: device (torch.device or int, optional): device for which to return the device capability. This function is a no-op if this argument is a negative integer. It uses the current device, given by :func:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). Returns: tuple(int, int): the major and minor cuda capability of the device """ prop = get_device_properties(device) return prop.major, prop.minor
def get_device_properties(device: _device_t) -> _CudaDeviceProperties: _lazy_init() # will define _get_device_properties device = _get_device_index(device, optional=True) if device < 0 or device >= device_count(): raise AssertionError("Invalid device id") return _get_device_properties(device)
[docs]@contextlib.contextmanager def stream(stream): r"""Context-manager that selects a given stream. All CUDA kernels queued within its context will be enqueued on a selected stream. Arguments: stream (Stream): selected stream. This manager is a no-op if it's ``None``. .. note:: Streams are per-device. If the selected stream is not on the current device, this function will also change the current device to match the stream. """ if stream is None: yield return src_prev_stream = current_stream() if src_prev_stream.device != stream.device: # The given stream is on a different device; have to restore the # current_stream on that device on exit as well with device(stream.device): dst_prev_stream = current_stream() torch._C._cuda_setStream(stream._cdata) try: yield finally: if src_prev_stream.device != stream.device: torch._C._cuda_setStream(dst_prev_stream._cdata) torch._C._cuda_setStream(src_prev_stream._cdata)
[docs]def device_count() -> int: r"""Returns the number of GPUs available.""" if is_available(): return torch._C._cuda_getDeviceCount() else: return 0
[docs]def get_arch_list() -> List[str]: r"""Returns list CUDA architectures this library was compiled for.""" if not is_available(): return [] arch_flags = torch._C._cuda_getArchFlags() if arch_flags is None: return [] return arch_flags.split()
[docs]def get_gencode_flags() -> str: r"""Returns NVCC gencode flags this library were compiled with.""" arch_list = get_arch_list() if len(arch_list) == 0: return "" arch_list = [arch.split("_") for arch in arch_list] return " ".join([f"-gencode compute=compute_{arch},code={kind}_{arch}" for (kind, arch) in arch_list])
[docs]def current_device() -> int: r"""Returns the index of a currently selected device.""" _lazy_init() return torch._C._cuda_getDevice()
[docs]def synchronize(device: _device_t = None) -> None: r"""Waits for all kernels in all streams on a CUDA device to complete. Arguments: device (torch.device or int, optional): device for which to synchronize. It uses the current device, given by :func:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). """ _lazy_init() with torch.cuda.device(device): return torch._C._cuda_synchronize()
[docs]def ipc_collect(): r"""Force collects GPU memory after it has been released by CUDA IPC. .. note:: Checks if any sent CUDA tensors could be cleaned from the memory. Force closes shared memory file used for reference counting if there is no active counters. Useful when the producer process stopped actively sending tensors and want to release unused memory. """ _lazy_init() return torch._C._cuda_ipc_collect()
[docs]def current_stream(device: Optional[_device_t] = None) -> Stream: r"""Returns the currently selected :class:`Stream` for a given device. Arguments: device (torch.device or int, optional): selected device. Returns the currently selected :class:`Stream` for the current device, given by :func:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). """ _lazy_init() return Stream(_cdata=torch._C._cuda_getCurrentStream( _get_device_index(device, optional=True)))
[docs]def default_stream(device: Optional[_device_t] = None) -> Stream: r"""Returns the default :class:`Stream` for a given device. Arguments: device (torch.device or int, optional): selected device. Returns the default :class:`Stream` for the current device, given by :func:`~torch.cuda.current_device`, if :attr:`device` is ``None`` (default). """ _lazy_init() return Stream(_cdata=torch._C._cuda_getDefaultStream( _get_device_index(device, optional=True)))
[docs]def current_blas_handle(): r"""Returns cublasHandle_t pointer to current cuBLAS handle""" _lazy_init() return torch._C._cuda_getCurrentBlasHandle()
from .memory import * from .random import * ################################################################################ # Define Storage and Tensor classes ################################################################################ from ..storage import _StorageBase if not hasattr(torch._C, 'CudaDoubleStorageBase'): # Define dummy base classes for t in ['Double', 'Float', 'Long', 'Int', 'Short', 'Char', 'Byte', 'Half', 'Bool', 'BFloat16', 'ComplexDouble', 'ComplexFloat']: storage_name = 'Cuda{0}StorageBase'.format(t) tensor_name = 'Cuda{0}TensorBase'.format(t) torch._C.__dict__[storage_name] = _dummy_type(storage_name) torch._C.__dict__[tensor_name] = _dummy_type(tensor_name) torch._C.__dict__['_CudaStreamBase'] = _dummy_type('CudaStreamBase') torch._C.__dict__['_CudaEventBase'] = _dummy_type('CudaEventBase') @staticmethod def _lazy_new(cls, *args, **kwargs): _lazy_init() # We may need to call lazy init again if we are a forked child # del _CudaBase.__new__ return super(_CudaBase, cls).__new__(cls, *args, **kwargs) class _CudaBase(object): is_cuda = True is_sparse = False def type(self, *args, **kwargs): with device(self.get_device()): return super(_CudaBase, self).type(*args, **kwargs) __new__ = _lazy_new class DoubleStorage(_CudaBase, torch._C.CudaDoubleStorageBase, _StorageBase): pass class FloatStorage(_CudaBase, torch._C.CudaFloatStorageBase, _StorageBase): pass class LongStorage(_CudaBase, torch._C.CudaLongStorageBase, _StorageBase): pass class IntStorage(_CudaBase, torch._C.CudaIntStorageBase, _StorageBase): pass class ShortStorage(_CudaBase, torch._C.CudaShortStorageBase, _StorageBase): pass class CharStorage(_CudaBase, torch._C.CudaCharStorageBase, _StorageBase): pass class ByteStorage(_CudaBase, torch._C.CudaByteStorageBase, _StorageBase): pass class HalfStorage(_CudaBase, torch._C.CudaHalfStorageBase, _StorageBase): pass class BoolStorage(_CudaBase, torch._C.CudaBoolStorageBase, _StorageBase): pass class BFloat16Storage(_CudaBase, torch._C.CudaBFloat16StorageBase, _StorageBase): pass class ComplexDoubleStorage(_CudaBase, torch._C.CudaComplexDoubleStorageBase, _StorageBase): pass class ComplexFloatStorage(_CudaBase, torch._C.CudaComplexFloatStorageBase, _StorageBase): pass torch._storage_classes.add(DoubleStorage) torch._storage_classes.add(FloatStorage) torch._storage_classes.add(LongStorage) torch._storage_classes.add(IntStorage) torch._storage_classes.add(ShortStorage) torch._storage_classes.add(CharStorage) torch._storage_classes.add(ByteStorage) torch._storage_classes.add(HalfStorage) torch._storage_classes.add(BoolStorage) torch._storage_classes.add(BFloat16Storage) torch._storage_classes.add(ComplexDoubleStorage) torch._storage_classes.add(ComplexFloatStorage) from . import sparse from . import profiler from . import nvtx from . import amp

此页内容是否对您有帮助