API

 torch / torch.linalg


torch.linalg

Common linear algebra operations.

Functions

torch.linalg.det(input) → Tensor

Alias of torch.det().

torch.linalg.norm(input, ord=None, dim=None, keepdim=False, *, out=None, dtype=None) → Tensor

Returns the matrix norm or vector norm of a given tensor.

This function can calculate one of eight different types of matrix norms, or one of an infinite number of vector norms, depending on both the number of reduction dimensions and the value of the ord parameter.

Parameters
  • input (Tensor) – The input tensor. If dim is None, x must be 1-D or 2-D, unless ord is None. If both dim and ord are None, the 2-norm of the input flattened to 1-D will be returned.

  • ord (int, float, inf, -inf, 'fro', 'nuc', optional) –

    The order of norm. inf refers to float('inf'), numpy’s inf object, or any equivalent object. The following norms can be calculated:

    ord

    norm for matrices

    norm for vectors

    None

    Frobenius norm

    2-norm

    ’fro’

    Frobenius norm

    – not supported –

    ‘nuc’

    nuclear norm

    – not supported –

    inf

    max(sum(abs(x), dim=1))

    max(abs(x))

    -inf

    min(sum(abs(x), dim=1))

    min(abs(x))

    0

    – not supported –

    sum(x != 0)

    1

    max(sum(abs(x), dim=0))

    as below

    -1

    min(sum(abs(x), dim=0))

    as below

    2

    2-norm (largest sing. value)

    as below

    -2

    smallest singular value

    as below

    other

    – not supported –

    sum(abs(x)**ord)**(1./ord)

    Default: None

  • dim (int, 2-tuple of python:ints, 2-list of python:ints, optional) – If dim is an int, vector norm will be calculated over the specified dimension. If dim is a 2-tuple of ints, matrix norm will be calculated over the specified dimensions. If dim is None, matrix norm will be calculated when the input tensor has two dimensions, and vector norm will be calculated when the input tensor has one dimension. Default: None

  • keepdim (bool, optional) – If set to True, the reduced dimensions are retained in the result as dimensions with size one. Default: False

Keyword Arguments
  • out (Tensor, optional) – The output tensor. Ignored if None. Default: None

  • dtype (torch.dtype, optional) – If specified, the input tensor is cast to dtype before performing the operation, and the returned tensor’s type will be dtype. If this argument is used in conjunction with the out argument, the output tensor’s type must match this argument or a RuntimeError will be raised. This argument is not currently supported for ord='nuc' or ord='fro'. Default: None

Examples:

>>> import torch
>>> from torch import linalg as LA
>>> a = torch.arange(9, dtype=torch.float) - 4
>>> a
tensor([-4., -3., -2., -1.,  0.,  1.,  2.,  3.,  4.])
>>> b = a.reshape((3, 3))
>>> b
tensor([[-4., -3., -2.],
        [-1.,  0.,  1.],
        [ 2.,  3.,  4.]])

>>> LA.norm(a)
tensor(7.7460)
>>> LA.norm(b)
tensor(7.7460)
>>> LA.norm(b, 'fro')
tensor(7.7460)
>>> LA.norm(a, float('inf'))
tensor(4.)
>>> LA.norm(b, float('inf'))
tensor(9.)
>>> LA.norm(a, -float('inf'))
tensor(0.)
>>> LA.norm(b, -float('inf'))
tensor(2.)

>>> LA.norm(a, 1)
tensor(20.)
>>> LA.norm(b, 1)
tensor(7.)
>>> LA.norm(a, -1)
tensor(0.)
>>> LA.norm(b, -1)
tensor(6.)
>>> LA.norm(a, 2)
tensor(7.7460)
>>> LA.norm(b, 2)
tensor(7.3485)

>>> LA.norm(a, -2)
tensor(0.)
>>> LA.norm(b.double(), -2)
tensor(1.8570e-16, dtype=torch.float64)
>>> LA.norm(a, 3)
tensor(5.8480)
>>> LA.norm(a, -3)
tensor(0.)

Using the dim argument to compute vector norms:

>>> c = torch.tensor([[1., 2., 3.],
...                   [-1, 1, 4]])
>>> LA.norm(c, dim=0)
tensor([1.4142, 2.2361, 5.0000])
>>> LA.norm(c, dim=1)
tensor([3.7417, 4.2426])
>>> LA.norm(c, ord=1, dim=1)
tensor([6., 6.])

Using the dim argument to compute matrix norms:

>>> m = torch.arange(8, dtype=torch.float).reshape(2, 2, 2)
>>> LA.norm(m, dim=(1,2))
tensor([ 3.7417, 11.2250])
>>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :])
(tensor(3.7417), tensor(11.2250))

此页内容是否对您有帮助