import collections
import contextlib
import warnings
from typing import Any, Dict, Union
import torch
from . import is_initialized, _get_device_index, _lazy_init
from torch.types import Device
def _host_allocator():
_lazy_init()
return torch._C._cuda_cudaHostAllocator()
@contextlib.contextmanager
def _free_mutex():
torch._C._cuda_lock_mutex()
try:
yield
finally:
torch._C._cuda_unlock_mutex()
def caching_allocator_alloc(size, device: Union[Device, int] = None, stream=None):
r"""Performs a memory allocation using the CUDA memory allocator.
Memory is allocated for a given device and a stream, this
function is intended to be used for interoperability with other
frameworks. Allocated memory is released through
:func:`~torch.cuda.caching_allocator_delete`.
Arguments:
size (int): number of bytes to be allocated.
device (torch.device or int, optional): selected device. If it is
``None`` the default CUDA device is used.
stream (torch.cuda.Stream or int, optional): selected stream. If is ``None`` then
the default stream for the selected device is used.
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
if device is None:
device = torch.cuda.current_device()
device = _get_device_index(device)
if stream is None:
stream = torch.cuda.current_stream(device)
if isinstance(stream, torch.cuda.streams.Stream):
stream = stream.cuda_stream
if not isinstance(stream, int):
raise TypeError('Invalid type for stream argument, must be '
'`torch.cuda.Stream` or `int` representing a pointer '
'to a exisiting stream')
with torch.cuda.device(device):
return torch._C._cuda_cudaCachingAllocator_raw_alloc(size, stream)
def caching_allocator_delete(mem_ptr):
r"""Deletes memory allocated using the CUDA memory allocator.
Memory allocated with :func:`~torch.cuda.caching_allocator_alloc`.
is freed here. The associated device and stream are tracked inside
the allocator.
Arguments:
mem_ptr (int): memory address to be freed by the allocator.
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
torch._C._cuda_cudaCachingAllocator_raw_delete(mem_ptr)
[docs]def empty_cache() -> None:
r"""Releases all unoccupied cached memory currently held by the caching
allocator so that those can be used in other GPU application and visible in
`nvidia-smi`.
.. note::
:func:`~torch.cuda.empty_cache` doesn't increase the amount of GPU
memory available for PyTorch. However, it may help reduce fragmentation
of GPU memory in certain cases. See :ref:`cuda-memory-management` for
more details about GPU memory management.
"""
if is_initialized():
torch._C._cuda_emptyCache()
[docs]def memory_stats(device: Union[Device, int] = None) -> Dict[str, Any]:
r"""Returns a dictionary of CUDA memory allocator statistics for a
given device.
The return value of this function is a dictionary of statistics, each of
which is a non-negative integer.
Core statistics:
- ``"allocated.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
number of allocation requests received by the memory allocator.
- ``"allocated_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
amount of allocated memory.
- ``"segment.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
number of reserved segments from ``cudaMalloc()``.
- ``"reserved_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
amount of reserved memory.
- ``"active.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
number of active memory blocks.
- ``"active_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
amount of active memory.
- ``"inactive_split.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
number of inactive, non-releasable memory blocks.
- ``"inactive_split_bytes.{all,large_pool,small_pool}.{current,peak,allocated,freed}"``:
amount of inactive, non-releasable memory.
For these core statistics, values are broken down as follows.
Pool type:
- ``all``: combined statistics across all memory pools.
- ``large_pool``: statistics for the large allocation pool
(as of October 2019, for size >= 1MB allocations).
- ``small_pool``: statistics for the small allocation pool
(as of October 2019, for size < 1MB allocations).
Metric type:
- ``current``: current value of this metric.
- ``peak``: maximum value of this metric.
- ``allocated``: historical total increase in this metric.
- ``freed``: historical total decrease in this metric.
In addition to the core statistics, we also provide some simple event
counters:
- ``"num_alloc_retries"``: number of failed ``cudaMalloc`` calls that
result in a cache flush and retry.
- ``"num_ooms"``: number of out-of-memory errors thrown.
Arguments:
device (torch.device or int, optional): selected device. Returns
statistics for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
result = []
def _recurse_add_to_result(prefix, obj):
if isinstance(obj, dict):
if len(prefix) > 0:
prefix += "."
for k, v in obj.items():
_recurse_add_to_result(prefix + k, v)
else:
result.append((prefix, obj))
stats = memory_stats_as_nested_dict(device=device)
_recurse_add_to_result("", stats)
result.sort()
return collections.OrderedDict(result)
def memory_stats_as_nested_dict(device: Union[Device, int] = None) -> Dict[str, Any]:
r"""Returns the result of :func:`~torch.cuda.memory_stats` as a nested dictionary."""
device = _get_device_index(device, optional=True)
return torch._C._cuda_memoryStats(device)
def reset_accumulated_memory_stats(device: Union[Device, int] = None) -> None:
r"""Resets the "accumulated" (historical) stats tracked by the CUDA memory allocator.
See :func:`~torch.cuda.memory_stats` for details. Accumulated stats correspond to
the `"allocated"` and `"freed"` keys in each individual stat dict, as well as
`"num_alloc_retries"` and `"num_ooms"`.
Arguments:
device (torch.device or int, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
device = _get_device_index(device, optional=True)
return torch._C._cuda_resetAccumulatedMemoryStats(device)
def reset_peak_memory_stats(device: Union[Device, int] = None) -> None:
r"""Resets the "peak" stats tracked by the CUDA memory allocator.
See :func:`~torch.cuda.memory_stats` for details. Peak stats correspond to the
`"peak"` key in each individual stat dict.
Arguments:
device (torch.device or int, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
device = _get_device_index(device, optional=True)
return torch._C._cuda_resetPeakMemoryStats(device)
[docs]def reset_max_memory_allocated(device: Union[Device, int] = None) -> None:
r"""Resets the starting point in tracking maximum GPU memory occupied by
tensors for a given device.
See :func:`~torch.cuda.max_memory_allocated` for details.
Arguments:
device (torch.device or int, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
.. warning::
This function now calls :func:`~torch.cuda.reset_peak_memory_stats`, which resets
/all/ peak memory stats.
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
warnings.warn(
"torch.cuda.reset_max_memory_allocated now calls torch.cuda.reset_peak_memory_stats, "
"which resets /all/ peak memory stats.",
FutureWarning)
return reset_peak_memory_stats(device=device)
[docs]def reset_max_memory_cached(device: Union[Device, int] = None) -> None:
r"""Resets the starting point in tracking maximum GPU memory managed by the
caching allocator for a given device.
See :func:`~torch.cuda.max_memory_cached` for details.
Arguments:
device (torch.device or int, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
.. warning::
This function now calls :func:`~torch.cuda.reset_peak_memory_stats`, which resets
/all/ peak memory stats.
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
warnings.warn(
"torch.cuda.reset_max_memory_cached now calls torch.cuda.reset_peak_memory_stats, "
"which resets /all/ peak memory stats.",
FutureWarning)
return reset_peak_memory_stats(device=device)
[docs]def memory_allocated(device: Union[Device, int] = None) -> int:
r"""Returns the current GPU memory occupied by tensors in bytes for a given
device.
Arguments:
device (torch.device or int, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
.. note::
This is likely less than the amount shown in `nvidia-smi` since some
unused memory can be held by the caching allocator and some context
needs to be created on GPU. See :ref:`cuda-memory-management` for more
details about GPU memory management.
"""
return memory_stats(device=device)["allocated_bytes.all.current"]
[docs]def max_memory_allocated(device: Union[Device, int] = None) -> int:
r"""Returns the maximum GPU memory occupied by tensors in bytes for a given
device.
By default, this returns the peak allocated memory since the beginning of
this program. :func:`~torch.cuda.reset_peak_stats` can be used to
reset the starting point in tracking this metric. For example, these two
functions can measure the peak allocated memory usage of each iteration in a
training loop.
Arguments:
device (torch.device or int, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
return memory_stats(device=device)["allocated_bytes.all.peak"]
[docs]def memory_reserved(device: Union[Device, int] = None) -> int:
r"""Returns the current GPU memory managed by the caching allocator in bytes
for a given device.
Arguments:
device (torch.device or int, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
return memory_stats(device=device)["reserved_bytes.all.current"]
[docs]def max_memory_reserved(device: Union[Device, int] = None) -> int:
r"""Returns the maximum GPU memory managed by the caching allocator in bytes
for a given device.
By default, this returns the peak cached memory since the beginning of this
program. :func:`~torch.cuda.reset_peak_stats` can be used to reset
the starting point in tracking this metric. For example, these two functions
can measure the peak cached memory amount of each iteration in a training
loop.
Arguments:
device (torch.device or int, optional): selected device. Returns
statistic for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
return memory_stats(device=device)["reserved_bytes.all.peak"]
[docs]def memory_cached(device: Union[Device, int] = None) -> int:
r"""Deprecated; see :func:`~torch.cuda.memory_reserved`."""
warnings.warn(
"torch.cuda.memory_cached has been renamed to torch.cuda.memory_reserved",
FutureWarning)
return memory_reserved(device=device)
[docs]def max_memory_cached(device: Union[Device, int] = None) -> int:
r"""Deprecated; see :func:`~torch.cuda.max_memory_reserved`."""
warnings.warn(
"torch.cuda.max_memory_cached has been renamed to torch.cuda.max_memory_reserved",
FutureWarning)
return max_memory_reserved(device=device)
[docs]def memory_snapshot():
r"""Returns a snapshot of the CUDA memory allocator state across all devices.
Interpreting the output of this function requires familiarity with the
memory allocator internals.
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
return torch._C._cuda_memorySnapshot()
[docs]def memory_summary(device: Union[Device, int] = None, abbreviated: bool = False) -> str:
r"""Returns a human-readable printout of the current memory allocator
statistics for a given device.
This can be useful to display periodically during training, or when
handling out-of-memory exceptions.
Arguments:
device (torch.device or int, optional): selected device. Returns
printout for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
abbreviated (bool, optional): whether to return an abbreviated summary
(default: False).
.. note::
See :ref:`cuda-memory-management` for more details about GPU memory
management.
"""
device = _get_device_index(device, optional=True)
stats = memory_stats(device=device)
def _format_size(sz, pref_sz):
prefixes = ["B ", "KB", "MB", "GB", "TB", "PB"]
prefix = prefixes[0]
for new_prefix in prefixes[1:]:
if pref_sz < 768 * 1024:
break
prefix = new_prefix
sz //= 1024
pref_sz /= 1024
return "{:7d} {}".format(sz, prefix)
def _format_count(cnt, pref_cnt):
prefixes = [" ", "K", "M"]
prefix = prefixes[0]
for new_prefix in prefixes[1:]:
if pref_cnt < 750 * 1000:
break
prefix = new_prefix
cnt //= 1000
pref_cnt /= 1000
return "{:7d} {} ".format(cnt, prefix)
metrics_to_display = [
("allocated_bytes", "Allocated memory", _format_size),
("active_bytes", "Active memory", _format_size),
("reserved_bytes", "GPU reserved memory", _format_size),
("inactive_split_bytes", "Non-releasable memory", _format_size),
("allocation", "Allocations", _format_count),
("active", "Active allocs", _format_count),
("segment", "GPU reserved segments", _format_count),
("inactive_split", "Non-releasable allocs", _format_count),
]
lines = []
lines.append("=" * 75)
lines.append(" {_:16} PyTorch CUDA memory summary, device ID {device:<17d} ")
lines.append("-" * 75)
lines.append(" {_:9} CUDA OOMs: {num_ooms:<12d} | {_:6} cudaMalloc retries: {num_alloc_retries:<8d} ")
lines.append("=" * 75)
lines.append(" Metric | Cur Usage | Peak Usage | Tot Alloc | Tot Freed ")
for metric_key, metric_name, formatter in metrics_to_display:
lines.append("-" * 75)
submetrics = [("all", metric_name)]
if not abbreviated:
submetrics.append(("large_pool", " from large pool"))
submetrics.append(("small_pool", " from small pool"))
current_prefval, peak_prefval, allocated_prefval, freed_prefval = None, None, None, None
for submetric_key, submetric_name in submetrics:
prefix = metric_key + "." + submetric_key + "."
current = stats[prefix + "current"]
peak = stats[prefix + "peak"]
allocated = stats[prefix + "allocated"]
freed = stats[prefix + "freed"]
if current_prefval is None:
current_prefval = current
peak_prefval = peak
allocated_prefval = allocated
freed_prefval = freed
lines.append(" {:<21} | {} | {} | {} | {} ".format(
submetric_name,
formatter(current, current_prefval),
formatter(peak, peak_prefval),
formatter(allocated, allocated_prefval),
formatter(freed, freed_prefval)),
)
lines.append("=" * 75)
fmt_dict = {"_": "", "device": device}
for k, v in stats.items():
fmt_dict[k.replace(".", "-")] = v
return "|" + "|\n|".join(lines).format(**fmt_dict) + "|\n"
def list_gpu_processes(device: Union[Device, int] = None) -> str:
r"""Returns a human-readable printout of the running processes
and their GPU memory use for a given device.
This can be useful to display periodically during training, or when
handling out-of-memory exceptions.
Arguments:
device (torch.device or int, optional): selected device. Returns
printout for the current device, given by :func:`~torch.cuda.current_device`,
if :attr:`device` is ``None`` (default).
"""
try:
import pynvml # type: ignore
except ModuleNotFoundError:
return("pynvml module not found, please install pynvml")
from pynvml import NVMLError_DriverNotLoaded
try:
pynvml.nvmlInit()
except NVMLError_DriverNotLoaded:
return ("cuda driver can't be loaded, is cuda enabled?")
device = _get_device_index(device, optional=True)
handle = pynvml.nvmlDeviceGetHandleByIndex(device)
procs = pynvml.nvmlDeviceGetComputeRunningProcesses(handle)
lines = []
lines.append(f"GPU:{device}")
if len(procs) == 0:
lines.append("no processes are running")
for p in procs:
mem = p.usedGpuMemory / (1024 * 1024)
lines.append(f"process {p.pid:>10d} uses {mem:>12.3f} MB GPU memory")
return "\n".join(lines)