API

 _modules/torch.distributed.distributed_c10d


Source code for torch.distributed.distributed_c10d

import pickle
import torch
import warnings
from torch._six import string_classes
from datetime import timedelta

# This module is wildcard imported from torch.distributed.
# TODO: specify __all__

from .constants import default_pg_timeout
from .rendezvous import rendezvous, register_rendezvous_handler  # noqa: F401
from . import (
    AllreduceOptions,
    AllreduceCoalescedOptions,
    AllToAllOptions,
    BroadcastOptions,
    GatherOptions,
    ReduceOptions,
    ReduceScatterOptions,
    ScatterOptions,
)
from . import ReduceOp
from . import PrefixStore


_MPI_AVAILABLE = True
_NCCL_AVAILABLE = True
_GLOO_AVAILABLE = True


try:
    from. import ProcessGroupMPI
except ImportError:
    _MPI_AVAILABLE = False

try:
    from. import ProcessGroupNCCL
except ImportError:
    _NCCL_AVAILABLE = False

try:
    from. import ProcessGroupGloo
except ImportError:
    _GLOO_AVAILABLE = False


[docs]class Backend(object): """ An enum-like class of available backends: GLOO, NCCL, MPI, and other registered backends. The values of this class are lowercase strings, e.g., ``"gloo"``. They can be accessed as attributes, e.g., ``Backend.NCCL``. This class can be directly called to parse the string, e.g., ``Backend(backend_str)`` will check if ``backend_str`` is valid, and return the parsed lowercase string if so. It also accepts uppercase strings, e.g., ``Backend("GLOO")`` returns ``"gloo"``. .. note:: The entry ``Backend.UNDEFINED`` is present but only used as initial value of some fields. Users should neither use it directly nor assume its existence. """ UNDEFINED = "undefined" GLOO = "gloo" NCCL = "nccl" MPI = "mpi" TCP = "tcp" def __new__(cls, name): if not isinstance(name, string_classes): raise ValueError("Backend name must be a string, but got: {}".format(name)) value = getattr(Backend, name.upper(), Backend.UNDEFINED) if value == Backend.TCP: raise ValueError("TCP backend has been deprecated. Please use " "Gloo or MPI backend for collective operations " "on CPU tensors.") elif value == Backend.UNDEFINED: raise ValueError("Invalid backend: '{}'".format(name)) elif value != Backend.GLOO and value != Backend.NCCL and value != Backend.MPI: value = name return value @classmethod def register_backend(cls, name, func): """ Registers a new backend. This class method is used by 3rd party cpp extension to register new backend. Arguments: name (str): Backend name matching with the one in `init_process_group()`. func (function): Function handler that instantiates the backend. The function should be implemented in the backend cpp extension and takes four arguments, including prefix_store, rank, world_size, and timeout. .. note:: This support of 3rd party backend is experimental and subject to change. """ setattr(Backend, name.upper(), func)
# `_backend`, `dist_backend`, and `reduce_op` are here to maintain backward # compatibility with pre-c10d distributed package. # TODO: remove them when users are ready to take a hard dependency on PyTorch 1. _backend = Backend.UNDEFINED dist_backend = Backend
[docs]class reduce_op(object): r""" Deprecated enum-like class for reduction operations: ``SUM``, ``PRODUCT``, ``MIN``, and ``MAX``. :class:`~torch.distributed.ReduceOp` is recommended to use instead. """ def __init__(self): # __members__ is a dict storing key-value pairs for enum classes for k, v in ReduceOp.__members__.items(): setattr(self, k, v) self.__members__ = ReduceOp.__members__ def __getattribute__(self, key): warnings.warn("torch.distributed.reduce_op is deprecated, please use " "torch.distributed.ReduceOp instead") return object.__getattribute__(self, key)
reduce_op = reduce_op() class group(object): WORLD = object() class GroupMember(object): # Alias to group.WORLD for backward compatibility WORLD = group.WORLD NON_GROUP_MEMBER = object() # Cached process groups # For NCCL and GLOO pg, it is a map from ProcessGroup to (Backend, Store) # For MPI pg, it is a map from ProcessGroup to (Backend, None) _pg_map = {} # Process group's names, map from ProcessGroup to str _pg_names = {} # Process group's global rank to local rank mapping _pg_group_ranks = {} # Default process group state _default_pg = None _default_pg_init_method = None # Process group count for default naming _group_count = 0 def _rank_not_in_group(group): """ Helper that checks if the current process's rank is not in a given group """ if group == GroupMember.WORLD: return False return group == GroupMember.NON_GROUP_MEMBER def _get_group_rank(group, rank): """ Helper that gets a given group's local rank in the group from a given global rank """ if group is GroupMember.WORLD: raise RuntimeError("group.WORLD does not have local rank to global " "rank mapping") if group not in _pg_group_ranks: raise RuntimeError("The given group does not exist") try: group_rank = _pg_group_ranks[group][rank] except KeyError: raise RuntimeError(f"The global rank {rank} is not part of the group {group}") from None return group_rank def _get_global_rank(group, group_rank): """ Helper that gets a given group's global rank from a given local rank in the group """ if group is GroupMember.WORLD: raise RuntimeError("group.WORLD does not have local rank to global " "rank mapping") group_rank_map = _pg_group_ranks[group] for rank, grp_rank in group_rank_map.items(): if grp_rank == group_rank: return rank raise RuntimeError("The group rank is not part of the group") def _check_default_pg(): """ Helper that checks if the default ProcessGroup has been initialized, with assertion """ assert _default_pg is not None, \ "Default process group is not initialized" def _get_group_size(group): """ Helper that gets a given group's world size """ if group is GroupMember.WORLD: _check_default_pg() return _default_pg.size() if group not in _pg_group_ranks: raise RuntimeError("The given group does not exist") return len(_pg_group_ranks[group]) def _check_single_tensor(param, param_name): """ Helper to check that the parameter ``param_name`` is a single tensor. """ if not isinstance(param, torch.Tensor): raise RuntimeError("Invalid function argument. Expected parameter `{}` " "to be of type torch.Tensor.".format(param_name)) def _check_tensor_list(param, param_name): """ Helper to check that the parameter ``param_name`` is a list of tensors. """ if not isinstance(param, list) or \ not all(isinstance(p, torch.Tensor) for p in param): raise RuntimeError("Invalid function argument. Expected parameter `{}` " "to be of type List[torch.Tensor].".format(param_name))
[docs]def is_mpi_available(): """ Checks if the MPI backend is available. """ return _MPI_AVAILABLE
[docs]def is_nccl_available(): """ Checks if the NCCL backend is available. """ return _NCCL_AVAILABLE
def is_gloo_available(): """ Checks if the Gloo backend is available. """ return _GLOO_AVAILABLE
[docs]def is_initialized(): """ Checking if the default process group has been initialized """ return _default_pg is not None
def _get_default_group(): """ Getting the default process group created by init_process_group """ if not is_initialized(): raise RuntimeError("Default process group has not been initialized, " "please make sure to call init_process_group.") return _default_pg def _get_default_store(): """ Getting the default store created by init_process_group """ if not is_initialized(): raise RuntimeError("Default process group has not been initialized, " "please make sure to call init_process_group.") _, default_store = _pg_map[_default_pg] return default_store
[docs]def get_backend(group=group.WORLD): """ Returns the backend of the given process group. Arguments: group (ProcessGroup, optional): The process group to work on. The default is the general main process group. If another specific group is specified, the calling process must be part of :attr:`group`. Returns: The backend of the given process group as a lower case string. """ _check_default_pg() if group == GroupMember.WORLD: pg = _default_pg else: pg = group if _rank_not_in_group(pg): raise RuntimeError("Invalid process group specified") return _pg_map.get(pg, None)[0]
[docs]def init_process_group(backend, init_method=None, timeout=default_pg_timeout, world_size=-1, rank=-1, store=None, group_name=''): """ Initializes the default distributed process group, and this will also initialize the distributed package. There are 2 main ways to initialize a process group: 1. Specify ``store``, ``rank``, and ``world_size`` explicitly. 2. Specify ``init_method`` (a URL string) which indicates where/how to discover peers. Optionally specify ``rank`` and ``world_size``, or encode all required parameters in the URL and omit them. If neither is specified, ``init_method`` is assumed to be "env://". Arguments: backend (str or Backend): The backend to use. Depending on build-time configurations, valid values include ``mpi``, ``gloo``, and ``nccl``. This field should be given as a lowercase string (e.g., ``"gloo"``), which can also be accessed via :class:`Backend` attributes (e.g., ``Backend.GLOO``). If using multiple processes per machine with ``nccl`` backend, each process must have exclusive access to every GPU it uses, as sharing GPUs between processes can result in deadlocks. init_method (str, optional): URL specifying how to initialize the process group. Default is "env://" if no ``init_method`` or ``store`` is specified. Mutually exclusive with ``store``. world_size (int, optional): Number of processes participating in the job. Required if ``store`` is specified. rank (int, optional): Rank of the current process. Required if ``store`` is specified. store(Store, optional): Key/value store accessible to all workers, used to exchange connection/address information. Mutually exclusive with ``init_method``. timeout (timedelta, optional): Timeout for operations executed against the process group. Default value equals 30 minutes. This is applicable for the ``gloo`` backend. For ``nccl``, this is applicable only if the environment variable ``NCCL_BLOCKING_WAIT`` or ``NCCL_ASYNC_ERROR_HANDLING`` is set to 1. When ``NCCL_BLOCKING_WAIT`` is set, this is the duration for which the process will block and wait for collectives to complete before throwing an exception. When ``NCCL_ASYNC_ERROR_HANDLING`` is set, this is the duration after which collectives will be aborted asynchronously and the process will crash. ``NCCL_BLOCKING_WAIT`` will provide errors to the user which can be caught and handled, but due to its blocking nature, it has a performance overhead. On the other hand, ``NCCL_ASYNC_ERROR_HANDLING`` has little performance overhead, but crashes the process on errors. This is done since CUDA execution is async and it is no longer safe to continue executing user code since failed async NCCL operations might result in subsequent CUDA operations to run on corrupted data. Only one of these two environment variables should be set. group_name (str, optional, deprecated): Group name. To enable ``backend == Backend.MPI``, PyTorch needs to be built from source on a system that supports MPI. """ global _pg_group_ranks global _backend global _default_pg global _default_pg_init_method if not isinstance(timeout, timedelta): raise RuntimeError("Expected timeout argument to be of type" "datetime.timedelta") if _default_pg is not None: raise RuntimeError("trying to initialize the default process group " "twice!") assert (store is None) or (init_method is None), \ "Cannot specify both init_method and store." if store is not None: assert world_size > 0, 'world_size must be positive if using store' assert rank >= 0, 'rank must be non-negative if using store' elif init_method is None: init_method = "env://" backend = Backend(backend) if backend == Backend.MPI: if world_size != -1 or rank != -1: warnings.warn( "For MPI backend, world_size ({}) and rank ({}) " "are ignored since they are assigned by the " "MPI runtime.".format(world_size, rank)) _default_pg = _new_process_group_helper( -1, -1, [], Backend.MPI, None, group_name=group_name, timeout=timeout) else: # backward compatible API if store is None: rendezvous_iterator = rendezvous( init_method, rank, world_size, timeout=timeout ) store, rank, world_size = next(rendezvous_iterator) store.set_timeout(timeout) _default_pg = _new_process_group_helper( world_size, rank, [], backend, store, group_name=group_name, timeout=timeout) _pg_group_ranks[_default_pg] = {i: i for i in range(_default_pg.size())} _backend = _pg_map[_default_pg][0] _default_pg_init_method = init_method # barrier at the end to ensure that once we return from this method, all # process groups including global variables are updated correctly on all # ranks. barrier()
def _new_process_group_helper(world_size, rank, group_ranks, backend, store, group_name=None, timeout=default_pg_timeout): """ Create a new distributed process group. This function must be called by ALL processes in the global group, even if the calling process is not part of the newly created group. In that case, this function returns GroupMember.NON_GROUP_MEMBER. This function is called with ``group_ranks == []`` for the default group. """ global _pg_map global _group_count global _pg_names if not group_name: group_name = str(_group_count) _group_count += 1 if group_name in _pg_names.values(): raise RuntimeError("The specified group name has already been " "created, please use a different group name") if not isinstance(timeout, timedelta): raise RuntimeError("Expected timeout argument to be of type" "datetime.timedelta") # The list of group ranks is empty if we're creating the default group. is_default_group = (len(group_ranks) == 0) backend = Backend(backend) if backend == Backend.MPI: if not is_mpi_available(): raise RuntimeError( "Distributed package doesn't have MPI built in." " MPI is only included if you build PyTorch from" " source on a host that has MPI installed.") pg = ProcessGroupMPI.create(group_ranks) if not pg: return GroupMember.NON_GROUP_MEMBER _pg_map[pg] = (Backend.MPI, None) _pg_names[pg] = group_name else: # If this is a subgroup (which means group_ranks is specified), # we check if the current process is a member of the new group. if not is_default_group: global_rank = _default_pg.rank() if global_rank not in group_ranks: return GroupMember.NON_GROUP_MEMBER # Use the group name as prefix in the default store, such that # a single store can be reused by multiple groups. prefix_store = PrefixStore(group_name, store) if backend == Backend.GLOO: pg = ProcessGroupGloo( prefix_store, rank, world_size, timeout=timeout) _pg_map[pg] = (Backend.GLOO, store) _pg_names[pg] = group_name elif backend == Backend.NCCL: if not is_nccl_available(): raise RuntimeError("Distributed package doesn't have NCCL " "built in") pg = ProcessGroupNCCL( prefix_store, rank, world_size, timeout) _pg_map[pg] = (Backend.NCCL, store) _pg_names[pg] = group_name else: pg = getattr(Backend, backend.upper())( prefix_store, rank, world_size, timeout) _pg_map[pg] = (backend, store) _pg_names[pg] = group_name return pg def destroy_process_group(group=group.WORLD): """ Destroy a given process group, and deinitialize the distributed package Arguments: group (ProcessGroup, optional): The process group to be destroyed, if group.WORLD is given, all process groups including the default one will be destroyed. """ global _pg_map global _pg_names global _pg_group_ranks global _default_pg global _default_pg_init_method global _group_count if group == GroupMember.NON_GROUP_MEMBER: return if group == GroupMember.WORLD: pg = _default_pg else: pg = group if _pg_map.get(pg, None) is None: raise RuntimeError("Invalid process group specified") if group == GroupMember.WORLD: _default_pg = None _default_pg_init_method = None _pg_map.clear() _pg_names.clear() _pg_group_ranks.clear() # when process group doesn't have an explicit name (only WORLD (default) # process group can have an explicit name), we use global _group_counter # to generate the name. We need to reset the counter on destruction to # allow consistent value to be generated when we re-create process # groups after some trainers recover from failure # # We only reset this when WORLD is being destroyed because if this # process group is in good state, we aren't dealing with failures. _group_count = 0 else: del _pg_map[pg] del _pg_names[pg] del _pg_group_ranks[pg]
[docs]def get_rank(group=group.WORLD): """ Returns the rank of current process group Rank is a unique identifier assigned to each process within a distributed process group. They are always consecutive integers ranging from 0 to ``world_size``. Arguments: group (ProcessGroup, optional): The process group to work on Returns: The rank of the process group -1, if not part of the group """ if _rank_not_in_group(group): return -1 _check_default_pg() if group == GroupMember.WORLD: return _default_pg.rank() return _get_group_rank(group, _default_pg.rank())
[docs]def get_world_size(group=group.WORLD): """ Returns the number of processes in the current process group Arguments: group (ProcessGroup, optional): The process group to work on Returns: The world size of the process group -1, if not part of the group """ if _rank_not_in_group(group): return -1 return _get_group_size(group)
[docs]def isend(tensor, dst, group=group.WORLD, tag=0): """ Sends a tensor asynchronously. Arguments: tensor (Tensor): Tensor to send. dst (int): Destination rank. group (ProcessGroup, optional): The process group to work on tag (int, optional): Tag to match send with remote recv Returns: A distributed request object. None, if not part of the group """ _check_single_tensor(tensor, "tensor") if _rank_not_in_group(group): return if group == GroupMember.WORLD: _check_default_pg() return _default_pg.send([tensor], dst, tag) else: group_dst_rank = _get_group_rank(group, dst) return group.send([tensor], group_dst_rank, tag)
[docs]def irecv(tensor, src, group=group.WORLD, tag=0): """ Receives a tensor asynchronously. Arguments: tensor (Tensor): Tensor to fill with received data. src (int): Source rank. group (ProcessGroup, optional): The process group to work on tag (int, optional): Tag to match recv with remote send Returns: A distributed request object. None, if not part of the group """ _check_single_tensor(tensor, "tensor") if _rank_not_in_group(group): return if group == GroupMember.WORLD: _check_default_pg() return _default_pg.recv([tensor], src, tag) else: group_src_rank = _get_group_rank(group, src) return group.recv([tensor], group_src_rank, tag)
[docs]def send(tensor, dst, group=group.WORLD, tag=0): """ Sends a tensor synchronously. Arguments: tensor (Tensor): Tensor to send. dst (int): Destination rank. group (ProcessGroup, optional): The process group to work on tag (int, optional): Tag to match send with remote recv """ _check_single_tensor(tensor, "tensor") if _rank_not_in_group(group): return if group == GroupMember.WORLD: _check_default_pg() _default_pg.send([tensor], dst, tag).wait() else: group_dst_rank = _get_group_rank(group, dst) group.send([tensor], group_dst_rank, tag).wait()
[docs]def recv(tensor, src=None, group=group.WORLD, tag=0): """ Receives a tensor synchronously. Arguments: tensor (Tensor): Tensor to fill with received data. src (int, optional): Source rank. Will receive from any process if unspecified. group (ProcessGroup, optional): The process group to work on tag (int, optional): Tag to match recv with remote send Returns: Sender rank -1, if not part of the group """ _check_single_tensor(tensor, "tensor") if _rank_not_in_group(group): return -1 if group == GroupMember.WORLD: _check_default_pg() pg = _default_pg else: pg = group if src is None: work = pg.recv_anysource([tensor], tag) work.wait() src_rank = work._source_rank() if group == GroupMember.WORLD: return src_rank else: return _get_global_rank(pg, src_rank) else: if group == GroupMember.WORLD: pg.recv([tensor], src, tag).wait() else: group_src_rank = _get_group_rank(pg, src) pg.recv([tensor], group_src_rank, tag).wait() return src
[docs]def broadcast_multigpu(tensor_list, src, group=group.WORLD, async_op=False, src_tensor=0): """ Broadcasts the tensor to the whole group with multiple GPU tensors per node. ``tensor`` must have the same number of elements in all the GPUs from all processes participating in the collective. each tensor in the list must be on a different GPU Only nccl and gloo backend are currently supported tensors should only be GPU tensors Arguments: tensor_list (List[Tensor]): Tensors that participate in the collective operation. If ``src`` is the rank, then the specified ``src_tensor`` element of ``tensor_list`` (``tensor_list[src_tensor]``) will be broadcast to all other tensors (on different GPUs) in the src process and all tensors in ``tensor_list`` of other non-src processes. You also need to make sure that ``len(tensor_list)`` is the same for all the distributed processes calling this function. src (int): Source rank. group (ProcessGroup, optional): The process group to work on async_op (bool, optional): Whether this op should be an async op src_tensor (int, optional): Source tensor rank within ``tensor_list`` Returns: Async work handle, if async_op is set to True. None, if not async_op or if not part of the group """ if _rank_not_in_group(group): return opts = BroadcastOptions() opts.rootRank = src opts.rootTensor = src_tensor if group == GroupMember.WORLD: _check_default_pg() work = _default_pg.broadcast(tensor_list, opts) else: group_src_rank = _get_group_rank(group, src) opts.rootRank = group_src_rank work = group.broadcast(tensor_list, opts) if async_op: return work else: work.wait()
[docs]def broadcast(tensor, src, group=group.WORLD, async_op=False): """ Broadcasts the tensor to the whole group. ``tensor`` must have the same number of elements in all processes participating in the collective. Arguments: tensor (Tensor): Data to be sent if ``src`` is the rank of current process, and tensor to be used to save received data otherwise. src (int): Source rank. group (ProcessGroup, optional): The process group to work on async_op (bool, optional): Whether this op should be an async op Returns: Async work handle, if async_op is set to True. None, if not async_op or if not part of the group """ _check_single_tensor(tensor, "tensor") if _rank_not_in_group(group): return opts = BroadcastOptions() opts.rootRank = src opts.rootTensor = 0 if group == GroupMember.WORLD: _check_default_pg() work = _default_pg.broadcast([tensor], opts) else: group_src_rank = _get_group_rank(group, src) opts.rootRank = group_src_rank work = group.broadcast([tensor], opts) if async_op: return work else: work.wait()
[docs]def all_reduce_multigpu(tensor_list, op=ReduceOp.SUM, group=group.WORLD, async_op=False): r""" Reduces the tensor data across all machines in such a way that all get the final result. This function reduces a number of tensors on every node, while each tensor resides on different GPUs. Therefore, the input tensor in the tensor list needs to be GPU tensors. Also, each tensor in the tensor list needs to reside on a different GPU. After the call, all ``tensor`` in ``tensor_list`` is going to be bitwise identical in all processes. Only nccl and gloo backend is currently supported tensors should only be GPU tensors Arguments: tensor list (List[Tensor]): List of input and output tensors of the collective. The function operates in-place and requires that each tensor to be a GPU tensor on different GPUs. You also need to make sure that ``len(tensor_list)`` is the same for all the distributed processes calling this function. op (optional): One of the values from ``torch.distributed.ReduceOp`` enum. Specifies an operation used for element-wise reductions. group (ProcessGroup, optional): The process group to work on async_op (bool, optional): Whether this op should be an async op Returns: Async work handle, if async_op is set to True. None, if not async_op or if not part of the group """ if _rank_not_in_group(group): return opts = AllreduceOptions() opts.reduceOp = op if group == GroupMember.WORLD: _check_default_pg() work = _default_pg.allreduce(tensor_list, opts) else: work = group.allreduce(tensor_list, opts) if async_op: return work else: work.wait()
[docs]def all_reduce(tensor, op=ReduceOp.SUM, group=group.WORLD, async_op=False): """ Reduces the tensor data across all machines in such a way that all get the final result. After the call ``tensor`` is going to be bitwise identical in all processes. Arguments: tensor (Tensor): Input and output of the collective. The function operates in-place. op (optional): One of the values from ``torch.distributed.ReduceOp`` enum. Specifies an operation used for element-wise reductions. group (ProcessGroup, optional): The process group to work on async_op (bool, optional): Whether this op should be an async op Returns: Async work handle, if async_op is set to True. None, if not async_op or if not part of the group """ _check_single_tensor(tensor, "tensor") if _rank_not_in_group(group): return opts = AllreduceOptions() opts.reduceOp = op if group == GroupMember.WORLD: _check_default_pg() work = _default_pg.allreduce([tensor], opts) else: work = group.allreduce([tensor], opts) if async_op: return work else: work.wait()
def all_reduce_coalesced(tensors, op=ReduceOp.SUM, group=group.WORLD, async_op=False): """ WARNING: at this time individual shape checking is not implemented across nodes. For example, if the rank 0 node passes [torch.rand(4), torch.rand(2)] and the rank 1 node passes [torch.rand(2), torch.rand(2), torch.rand(2)], the allreduce operation will proceed without complaint and return erroneous outputs. This lack of shape checking results in significant performance improvements but users of this function should take extra care to ensure that each node passes in tensors whose shapes match across nodes. Reduces each tensor in tensors (residing on the same device) across all machines in such a way that all get the final result. After the call each tensor in tensors is going to bitwise identical in all processes. Arguments: tensors (List[Tensor]): Input and output of the collective. The function operates in-place. op (Optional[ReduceOp]): One of the values from ``torch.distributed.ReduceOp`` enum. Specifies an operation used for element-wise reductions. group (Optional[ProcessGroup]): The process group to work on. async_op (Optional[bool]): Whether this op should be an async op. Returns: Async work handle, if async_op is set to True. None, if not async_op or if not part of the group. """ _check_tensor_list(tensors, "tensor") if _rank_not_in_group(group): return opts = AllreduceCoalescedOptions() opts.reduceOp = op if group == GroupMember.WORLD: _check_default_pg() work = _default_pg.allreduce_coalesced(tensors, opts) else: work = group.allreduce_coalesced(tensors, opts) if async_op: return work else: work.wait()
[docs]def reduce_multigpu(tensor_list, dst, op=ReduceOp.SUM, group=group.WORLD, async_op=False, dst_tensor=0): """ Reduces the tensor data on multiple GPUs across all machines. Each tensor in ``tensor_list`` should reside on a separate GPU Only the GPU of ``tensor_list[dst_tensor]`` on the process with rank ``dst`` is going to receive the final result. Only nccl backend is currently supported tensors should only be GPU tensors Arguments: tensor_list (List[Tensor]): Input and output GPU tensors of the collective. The function operates in-place. You also need to make sure that ``len(tensor_list)`` is the same for all the distributed processes calling this function. dst (int): Destination rank op (optional): One of the values from ``torch.distributed.ReduceOp`` enum. Specifies an operation used for element-wise reductions. group (ProcessGroup, optional): The process group to work on async_op (bool, optional): Whether this op should be an async op dst_tensor (int, optional): Destination tensor rank within ``tensor_list`` Returns: Async work handle, if async_op is set to True. None, otherwise """ if _rank_not_in_group(group): return opts = ReduceOptions() opts.reduceOp = op opts.rootRank = dst opts.rootTensor = dst_tensor if group == GroupMember.WORLD: _check_default_pg() work = _default_pg.reduce(tensor_list, opts) else: group_dst_rank = _get_group_rank(group, dst) opts.rootRank = group_dst_rank work = group.reduce(tensor_list, opts) if async_op: return work else: work.wait()
[docs]def reduce(tensor, dst, op=ReduceOp.SUM, group=group.WORLD, async_op=False): """ Reduces the tensor data across all machines. Only the process with rank ``dst`` is going to receive the final result. Arguments: tensor (Tensor): Input and output of the collective. The function operates in-place. dst (int): Destination rank op (optional): One of the values from ``torch.distributed.ReduceOp`` enum. Specifies an operation used for element-wise reductions. group (ProcessGroup, optional): The process group to work on async_op (bool, optional): Whether this op should be an async op Returns: Async work handle, if async_op is set to True. None, if not async_op or if not part of the group """ _check_single_tensor(tensor, "tensor") if _rank_not_in_group(group): return opts = ReduceOptions() opts.reduceOp = op opts.rootRank = dst if group == GroupMember.WORLD: _check_default_pg() work = _default_pg.reduce([tensor], opts) else: group_dst_rank = _get_group_rank(group, dst) opts.rootRank = group_dst_rank work = group.reduce([tensor], opts) if async_op: return work else: work.wait()
[docs]def all_gather_multigpu(output_tensor_lists, input_tensor_list, group=group.WORLD, async_op=False): """ Gathers tensors from the whole group in a list. Each tensor in ``tensor_list`` should reside on a separate GPU Only nccl backend is currently supported tensors should only be GPU tensors Arguments: output_tensor_lists (List[List[Tensor]]): Output lists. It should contain correctly-sized tensors on each GPU to be used for output of the collective, e.g. ``output_tensor_lists[i]`` contains the all_gather result that resides on the GPU of ``input_tensor_list[i]``. Note that each element of ``output_tensor_lists`` has the size of ``world_size * len(input_tensor_list)``, since the function all gathers the result from every single GPU in the group. To interpret each element of ``output_tensor_lists[i]``, note that ``input_tensor_list[j]`` of rank k will be appear in ``output_tensor_lists[i][k * world_size + j]`` Also note that ``len(output_tensor_lists)``, and the size of each element in ``output_tensor_lists`` (each element is a list, therefore ``len(output_tensor_lists[i])``) need to be the same for all the distributed processes calling this function. input_tensor_list (List[Tensor]): List of tensors(on different GPUs) to be broadcast from current process. Note that ``len(input_tensor_list)`` needs to be the same for all the distributed processes calling this function. group (ProcessGroup, optional): The process group to work on async_op (bool, optional): Whether this op should be an async op Returns: Async work handle, if async_op is set to True. None, if not async_op or if not part of the group """ if _rank_not_in_group(group): return if group == GroupMember.WORLD: _check_default_pg() work = _default_pg.allgather(output_tensor_lists, input_tensor_list) else: work = group.allgather(output_tensor_lists, input_tensor_list) if async_op: return work else: work.wait()
def _object_to_tensor(obj): buffer = pickle.dumps(obj) byte_storage = torch.ByteStorage.from_buffer(buffer) byte_tensor = torch.ByteTensor(byte_storage) local_size = torch.LongTensor([byte_tensor.numel()]) return byte_tensor, local_size def _tensor_to_object(tensor, tensor_size): buf = tensor.numpy().tobytes()[:tensor_size] out = pickle.loads(buf) return out def all_gather_object(object_list, obj, group=group.WORLD): """ Gathers picklable objects from the whole group into a list. Similar to :func:`all_gather`, but Python objects can be passed in. Note that the object must be picklable in order to be gathered. Arguments: object_list (list[Any]): Output list. It should be correctly sized as the size of the group for this collective and will contain the output. object (Any): Pickable Python object to be broadcast from current process. group (ProcessGroup, optional): The process group to work on Returns: None. If the calling rank is part of this group, the output of the collective will be populated into the input ``object_list``. If the calling rank is not part of the group, the passed in ``object_list`` will be unmodified. .. note:: Note that this API differs slightly from the :func:`all_gather` collective since it does not provide an ``async_op`` handle and thus will be a blocking call. .. warning:: :func:`all_gather_object` uses ``pickle`` module implicitly, which is known to be insecure. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling. Only call this function with data you trust. """ if _rank_not_in_group(group): return input_tensor, local_size = _object_to_tensor(obj) group_backend = get_backend(group) my_rank = get_rank() is_nccl_backend = group_backend == Backend.NCCL if is_nccl_backend: input_tensor, local_size = input_tensor.to(my_rank), local_size.to(my_rank) # Gather all local sizes. This is so that we can find the max size, and index # until the correct size when deserializing the tensors. group_size = get_world_size(group=group) object_sizes_tensor = torch.zeros(group_size, dtype=int).to( my_rank if is_nccl_backend else "cpu" ) object_size_list = [ object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size) ] # Allgather tensor sizes all_gather(object_size_list, local_size, group=group) max_object_size = max(object_size_list) # Resize tensor to max size across all ranks. input_tensor.resize_(max_object_size) coalesced_output_tensor = torch.empty( max_object_size * group_size, dtype=torch.uint8 ).to(my_rank if is_nccl_backend else "cpu") # Output tensors are nonoverlapping views of coalesced_output_tensor output_tensors = [ coalesced_output_tensor[max_object_size * i : max_object_size * (i + 1)] for i in range(group_size) ] all_gather(output_tensors, input_tensor, group=group) # Deserialize outputs back to object. for i, tensor in enumerate(output_tensors): tensor = tensor.type(torch.ByteTensor) tensor_size = object_size_list[i] object_list[i] = _tensor_to_object(tensor, tensor_size) def gather_object(obj, object_gather_list=None, dst=0, group=group.WORLD): """ Gathers picklable objects from the whole group in a single process. Similar to :func:`gather`, but Python objects can be passed in. Note that the object must be picklable in order to be gathered. Arguments: obj (Any): Input object. Must be picklable. object_gather_list (list[Any]): Output list. On the ``dst`` rank, it should be correctly sized as the size of the group for this collective and will contain the output. Must be ``None`` on non-dst ranks. (default is ``None``) dst (int, optional): Destination rank. (default is 0) group: (ProcessGroup, optional): The process group to work on. Returns: None. On the ``dst`` rank, ``object_gather_list`` will contain the output of the collective. .. note:: Note that this API differs slightly from the gather collective since it does not provide an async_op handle and thus will be a blocking call. .. note:: Note that this API is not supported when using the NCCL backend. .. warning:: :func:`gather_object` uses ``pickle`` module implicitly, which is known to be insecure. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling. Only call this function with data you trust. """ if _rank_not_in_group(group): return # Ensure object_gather_list is specified appopriately. my_rank = get_rank() _validate_output_list_for_rank(my_rank, dst, object_gather_list) input_tensor, local_size = _object_to_tensor(obj) group_backend = get_backend(group) is_nccl_backend = group_backend == Backend.NCCL if is_nccl_backend: input_tensor, local_size = input_tensor.to(my_rank), local_size.to(my_rank) # Gather all local sizes. This is so that we can find the max size, and index # until the correct size when deserializing the tensors. group_size = get_world_size(group=group) object_sizes_tensor = torch.zeros(group_size, dtype=int).to( my_rank if is_nccl_backend else "cpu" ) object_size_list = [ object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size) ] # Allgather tensor sizes. An all-gather is needed here despite this being a gather, # since each rank needs to broadcast a tensor of the same (maximal) size. all_gather(object_size_list, local_size, group=group) max_object_size = max(object_size_list) # Resize tensor to max size across all ranks. input_tensor.resize_(max_object_size) # Avoid populating output tensors if the result won't be gathered on this rank. if my_rank == dst: coalesced_output_tensor = torch.empty( max_object_size * group_size, dtype=torch.uint8 ).to(my_rank if is_nccl_backend else "cpu") # Output tensors are nonoverlapping views of coalesced_output_tensor output_tensors = [ coalesced_output_tensor[max_object_size * i : max_object_size * (i + 1)] for i in range(group_size) ] # All ranks call gather with equal-sized tensors. gather( input_tensor, gather_list=output_tensors if my_rank == dst else None, dst=dst, group=group, ) if my_rank != dst: return for i, tensor in enumerate(output_tensors): tensor = tensor.type(torch.ByteTensor) tensor_size = object_size_list[i] object_gather_list[i] = _tensor_to_object(tensor, tensor_size) def broadcast_object_list(object_list, src, group=group.WORLD): """ Broadcasts picklable objects in ``object_list`` to the whole group. Similar to :func:`broadcast`, but Python objects can be passed in. Note that all objects in ``object_list`` must be picklable in order to be broadcasted. Arguments: object_list (List[Any]): List of input objects to broadcast. Each object must be picklable. Only objects on the ``src`` rank will be broadcast, but each rank must provide lists of equal sizes. src (int): Source rank from which to broadcast ``object_list``. group: (ProcessGroup, optional): The process group to work on. Returns: ``None``. If rank is part of the group, ``object_list`` will contain the broadcasted objects from ``src`` rank. .. note:: Note that this API differs slightly from the broadcast collective since it does not provide an ``async_op`` handle and thus will be a blocking call. .. warning:: :func:`broadcast_object_list` uses ``pickle`` module implicitly, which is known to be insecure. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling. Only call this function with data you trust. """ if _rank_not_in_group(group): return my_rank = get_rank() # Serialize object_list elements to tensors on src rank. if my_rank == src: tensor_list, size_list = zip(*[_object_to_tensor(obj) for obj in object_list]) object_sizes_tensor = torch.cat(size_list) else: object_sizes_tensor = torch.LongTensor(len(object_list)) group_backend = get_backend(group) is_nccl_backend = group_backend == Backend.NCCL if is_nccl_backend: object_sizes_tensor = object_sizes_tensor.to(my_rank) # Broadcast object sizes broadcast(object_sizes_tensor, src=src, group=group) # Concatenate and broadcast serialized object tensors if my_rank == src: object_tensor = torch.cat(tensor_list) else: object_tensor = torch.ByteTensor(torch.sum(object_sizes_tensor).item()) if is_nccl_backend: object_tensor = object_tensor.to(my_rank) broadcast(object_tensor, src=src, group=group) # Deserialize objects using their stored sizes. offset = 0 if my_rank != src: for i, obj_size in enumerate(object_sizes_tensor): obj_view = object_tensor[offset : offset + obj_size] obj_view = obj_view.type(torch.ByteTensor) offset += obj_size object_list[i] = _tensor_to_object(obj_view, obj_size)
[docs]def all_gather(tensor_list, tensor, group=group.WORLD, async_op=False): """ Gathers tensors from the whole group in a list. Arguments: tensor_list (list[Tensor]): Output list. It should contain correctly-sized tensors to be used for output of the collective. tensor (Tensor): Tensor to be broadcast from current process. group (ProcessGroup, optional): The process group to work on async_op (bool, optional): Whether this op should be an async op Returns: Async work handle, if async_op is set to True. None, if not async_op or if not part of the group """ _check_tensor_list(tensor_list, "tensor_list") _check_single_tensor(tensor, "tensor") if _rank_not_in_group(group): return if group == GroupMember.WORLD: _check_default_pg() work = _default_pg.allgather([tensor_list], [tensor]) else: work = group.allgather([tensor_list], [tensor]) if async_op: return work else: work.wait()
def all_gather_coalesced(output_tensor_lists, input_tensor_list, group=group.WORLD, async_op=False): """ Gathers input tensors from the whole group in a list in a coalesced manner. Arguments: output_tensor_lists (list[list[Tensor]]): Output list. It should contain correctly-sized tensors to be used for output of the collective. input_tensor_list (list[Tensor]): Tensors to be broadcast from current process. At least one tensor has to be non empty. group (ProcessGroup, optional): The process group to work on async_op (bool, optional): Whether this op should be an async op. Returns: Async work handle, if async_op is set to True. None, if not async_op or if not part of the group Example: we have 2 process groups, 2 ranks. rank 0 passes: input_tensor_list = [[[1, 1], [1, 1]], [2], [3, 3]] output_tensor_lists = [[[[-1, -1], [-1, -1]], [-1], [-1, -1]], [[[-1, -1], [-1, -1]], [-1], [-1, -1]]] rank 1 passes: input_tensor_list = [[[3, 3], [3, 3]], [5], [1, 1]] output_tensor_lists = [[[[-1, -1], [-1, -1]], [-1], [-1, -1]], [[[-1, -1], [-1, -1]], [-1], [-1, -1]]] both rank 0 and 1 get: output_tensor_lists = [[[1, 1], [1, 1]], [2], [3, 3]], [[3, 3], [3, 3]], [5], [1, 1]]]. WARNING: at this time individual shape checking is not implemented across nodes. For example, if the rank 0 node passes [torch.rand(4), torch.rand(2)] and the rank 1 node passes [torch.rand(2), torch.rand(2), torch.rand(2)], the all_gather_coalesced operation will proceed without complaint and return erroneous outputs. This lack of shape checking results in significant performance improvements but users of this function should take extra care to ensure that each node passes in tensors whose shapes match across nodes. """ # We only check basic compatibility with C++ params here, C++ code will # do shape and type checking. if _rank_not_in_group(group): return _check_tensor_list(input_tensor_list, "tensor_list") if not isinstance(output_tensor_lists, list): raise RuntimeError("Invalid function argument: " "output_tensor_lists should be a list") for output_tensor_list in output_tensor_lists: _check_tensor_list(output_tensor_list, "output_tensor_lists") if group == GroupMember.WORLD: _check_default_pg() work = _default_pg.allgather_coalesced( output_tensor_lists, input_tensor_list) else: work = group.allgather_coalesced(output_tensor_lists, input_tensor_list) if async_op: return work else: work.wait() def _validate_output_list_for_rank(my_rank, dst, gather_list): if dst == my_rank: if not gather_list: raise ValueError( "Argument ``gather_list`` must be specified on destination rank." ) elif gather_list: raise ValueError( "Argument ``gather_list`` must NOT be specified " "on non-destination ranks." )
[docs]def gather(tensor, gather_list=None, dst=0, group=group.WORLD, async_op=False): """ Gathers a list of tensors in a single process. Arguments: tensor (Tensor): Input tensor. gather_list (list[Tensor], optional): List of appropriately-sized tensors to use for gathered data (default is None, must be specified on the destination rank) dst (int, optional): Destination rank (default is 0) group (ProcessGroup, optional): The process group to work on async_op (bool, optional): Whether this op should be an async op Returns: Async work handle, if async_op is set to True. None, if not async_op or if not part of the group """ _check_single_tensor(tensor, "tensor") # Parameter ``gather_list`` may be left unspecified on non-dst ranks. if gather_list: _check_tensor_list(gather_list, "gather_list") else: gather_list = [] if _rank_not_in_group(group): return my_rank = get_rank() _validate_output_list_for_rank(my_rank, dst, gather_list) output_tensors = [gather_list] if dst == my_rank else [] input_tensors = [tensor] opts = GatherOptions() opts.rootRank = dst if group == GroupMember.WORLD: _check_default_pg() work = _default_pg.gather(output_tensors, input_tensors, opts) else: group_dst_rank = _get_group_rank(group, dst) opts.rootRank = group_dst_rank work = group.gather(output_tensors, input_tensors, opts) if async_op: return work else: work.wait()
[docs]def scatter(tensor, scatter_list=None, src=0, group=group.WORLD, async_op=False): """ Scatters a list of tensors to all processes in a group. Each process will receive exactly one tensor and store its data in the ``tensor`` argument. Arguments: tensor (Tensor): Output tensor. scatter_list (list[Tensor]): List of tensors to scatter (default is None, must be specified on the source rank) src (int): Source rank (default is 0) group (ProcessGroup, optional): The process group to work on async_op (bool, optional): Whether this op should be an async op Returns: Async work handle, if async_op is set to True. None, if not async_op or if not part of the group """ _check_single_tensor(tensor, "tensor") # Parameter ``scatter_list`` may be left unspecified on non-src ranks. if scatter_list: _check_tensor_list(scatter_list, "scatter_list") else: scatter_list = [] if _rank_not_in_group(group): return my_rank = get_rank() if src == my_rank: if not scatter_list: raise ValueError("Argument ``scatter_list`` must be specified " "on source rank.") input_tensors = [scatter_list] output_tensors = [tensor] else: if scatter_list: raise ValueError("Argument ``scatter_list`` must NOT be specified " "on non-source ranks.") input_tensors = [] output_tensors = [tensor] opts = ScatterOptions() opts.rootRank = src if group == GroupMember.WORLD: _check_default_pg() work = _default_pg.scatter(output_tensors, input_tensors, opts) else: group_src_rank = _get_group_rank(group, src) opts.rootRank = group_src_rank work = group.scatter(output_tensors, input_tensors, opts) if async_op: return work else: work.wait()
[docs]def reduce_scatter_multigpu(output_tensor_list, input_tensor_lists, op=ReduceOp.SUM, group=group.WORLD, async_op=False): """ Reduce and scatter a list of tensors to the whole group. Only nccl backend is currently supported. Each tensor in ``output_tensor_list`` should reside on a separate GPU, as should each list of tensors in ``input_tensor_lists``. Arguments: output_tensor_list (List[Tensor]): Output tensors (on different GPUs) to receive the result of the operation. Note that ``len(output_tensor_list)`` needs to be the same for all the distributed processes calling this function. input_tensor_lists (List[List[Tensor]]): Input lists. It should contain correctly-sized tensors on each GPU to be used for input of the collective, e.g. ``input_tensor_lists[i]`` contains the reduce_scatter input that resides on the GPU of ``output_tensor_list[i]``. Note that each element of ``input_tensor_lists`` has the size of ``world_size * len(output_tensor_list)``, since the function scatters the result from every single GPU in the group. To interpret each element of ``input_tensor_lists[i]``, note that ``output_tensor_list[j]`` of rank k receives the reduce-scattered result from ``input_tensor_lists[i][k * world_size + j]`` Also note that ``len(input_tensor_lists)``, and the size of each element in ``input_tensor_lists`` (each element is a list, therefore ``len(input_tensor_lists[i])``) need to be the same for all the distributed processes calling this function. group (ProcessGroup, optional): The process group to work on. async_op (bool, optional): Whether this op should be an async op. Returns: Async work handle, if async_op is set to True. None, if not async_op or if not part of the group. """ if _rank_not_in_group(group): return opts = ReduceScatterOptions() opts.reduceOp = op if group == GroupMember.WORLD: _check_default_pg() work = _default_pg.reduce_scatter( output_tensor_list, input_tensor_lists, opts ) else: work = group.reduce_scatter( output_tensor_list, input_tensor_lists, opts ) if async_op: return work else: work.wait()
[docs]def reduce_scatter(output, input_list, op=ReduceOp.SUM, group=group.WORLD, async_op=False): """ Reduces, then scatters a list of tensors to all processes in a group. Arguments: output (Tensor): Output tensor. input_list (list[Tensor]): List of tensors to reduce and scatter. group (ProcessGroup, optional): The process group to work on. async_op (bool, optional): Whether this op should be an async op. Returns: Async work handle, if async_op is set to True. None, if not async_op or if not part of the group. """ _check_single_tensor(output, "output") _check_tensor_list(input_list, "input_list") if _rank_not_in_group(group): return opts = ReduceScatterOptions() opts.reduceOp = op if group == GroupMember.WORLD: _check_default_pg() work = _default_pg.reduce_scatter([output], [input_list], opts) else: work = group.reduce_scatter([output], [input_list], opts) if async_op: return work else: work.wait()
def all_to_all_single(output, input, output_split_sizes=None, input_split_sizes=None, group=group.WORLD, async_op=False): """ Each process splits input tensor and then scatters the split list to all processes in a group. Then concatenate the received tensors from all the processes in the group and return single output tensor. Arguments: output (Tensor): Gathered cancatenated output tensor. input (Tensor): Input tensor to scatter. output_split_sizes: (list[Int], optional): Output split sizes for dim 0 if specified None or empty, dim 0 of ``output`` tensor must divide equally by ``world_size``. input_split_sizes: (list[Int], optional): Input split sizes for dim 0 if specified None or empty, dim 0 of ``input`` tensor must divide equally by ``world_size``. group (ProcessGroup, optional): The process group to work on. async_op (bool, optional): Whether this op should be an async op. Returns: Async work handle, if async_op is set to True. None, if not async_op or if not part of the group. .. warning:: `all_to_all_single` is experimental and subject to change. Examples: >>> input = torch.arange(4) + rank * 4 >>> input tensor([0, 1, 2, 3]) # Rank 0 tensor([4, 5, 6, 7]) # Rank 1 tensor([8, 9, 10, 11]) # Rank 2 tensor([12, 13, 14, 15]) # Rank 3 >>> output = torch.empty([4], dtype=torch.int64) >>> dist.all_to_all_single(output, input) >>> output tensor([0, 4, 8, 12]) # Rank 0 tensor([1, 5, 9, 13]) # Rank 1 tensor([2, 6, 10, 14]) # Rank 2 tensor([3, 7, 11, 15]) # Rank 3 >>> # Essentially, it is similar to following operation: >>> scatter_list = list(input.chunk(world_size)) >>> gather_list = list(output.chunk(world_size)) >>> for i in range(world_size): >>> dist.scatter(gather_list[i], scatter_list if i == rank else [], src = i) >>> # Another example with uneven split >>> input tensor([0, 1, 2, 3, 4, 5]) # Rank 0 tensor([10, 11, 12, 13, 14, 15, 16, 17, 18]) # Rank 1 tensor([20, 21, 22, 23, 24]) # Rank 2 tensor([30, 31, 32, 33, 34, 35, 36]) # Rank 3 >>> input_splits [2, 2, 1, 1] # Rank 0 [3, 2, 2, 2] # Rank 1 [2, 1, 1, 1] # Rank 2 [2, 2, 2, 1] # Rank 3 >>> output_splits [2, 3, 2, 2] # Rank 0 [2, 2, 1, 2] # Rank 1 [1, 2, 1, 2] # Rank 2 [1, 2, 1, 1] # Rank 3 >>> output = ... >>> dist.all_to_all_single(output, input, output_splits, input_splits) >>> output tensor([ 0, 1, 10, 11, 12, 20, 21, 30, 31]) # Rank 0 tensor([ 2, 3, 13, 14, 22, 32, 33]) # Rank 1 tensor([ 4, 15, 16, 23, 34, 35]) # Rank 2 tensor([ 5, 17, 18, 24, 36]) # Rank 3 """ if _rank_not_in_group(group): return opts = AllToAllOptions() _check_single_tensor(output, "output") _check_single_tensor(input, "input") output_split_sizes = [] if output_split_sizes is None else output_split_sizes input_split_sizes = [] if input_split_sizes is None else input_split_sizes if group == GroupMember.WORLD: _check_default_pg() work = _default_pg.alltoall_base(output, input, output_split_sizes, input_split_sizes, opts) else: work = group.alltoall_base(output, input, output_split_sizes, input_split_sizes, opts) if async_op: return work else: work.wait()
[docs]def all_to_all(output_tensor_list, input_tensor_list, group=group.WORLD, async_op=False): """ Each process scatters list of input tensors to all processes in a group and return gathered list of tensors in output list. Arguments: output_tensor_list (list[Tensor]): List of tensors to be gathered one per rank. input_tensor_list (list[Tensor]): List of tensors to scatter one per rank. group (ProcessGroup, optional): The process group to work on. async_op (bool, optional): Whether this op should be an async op. Returns: Async work handle, if async_op is set to True. None, if not async_op or if not part of the group. .. warning:: `all_to_all` is experimental and subject to change. Examples: >>> input = torch.arange(4) + rank * 4 >>> input = list(input.chunk(4)) >>> input [tensor([0]), tensor([1]), tensor([2]), tensor([3])] # Rank 0 [tensor([4]), tensor([5]), tensor([6]), tensor([7])] # Rank 1 [tensor([8]), tensor([9]), tensor([10]), tensor([11])] # Rank 2 [tensor([12]), tensor([13]), tensor([14]), tensor([15])] # Rank 3 >>> output = list(torch.empty([4], dtype=torch.int64).chunk(4)) >>> dist.all_to_all(output, input) >>> output [tensor([0]), tensor([4]), tensor([8]), tensor([12])] # Rank 0 [tensor([1]), tensor([5]), tensor([9]), tensor([13])] # Rank 1 [tensor([2]), tensor([6]), tensor([10]), tensor([14])] # Rank 2 [tensor([3]), tensor([7]), tensor([11]), tensor([15])] # Rank 3 >>> # Essentially, it is similar to following operation: >>> scatter_list = input >>> gather_list = output >>> for i in range(world_size): >>> dist.scatter(gather_list[i], scatter_list if i == rank else [], src = i) >>> input tensor([0, 1, 2, 3, 4, 5]) # Rank 0 tensor([10, 11, 12, 13, 14, 15, 16, 17, 18]) # Rank 1 tensor([20, 21, 22, 23, 24]) # Rank 2 tensor([30, 31, 32, 33, 34, 35, 36]) # Rank 3 >>> input_splits [2, 2, 1, 1] # Rank 0 [3, 2, 2, 2] # Rank 1 [2, 1, 1, 1] # Rank 2 [2, 2, 2, 1] # Rank 3 >>> output_splits [2, 3, 2, 2] # Rank 0 [2, 2, 1, 2] # Rank 1 [1, 2, 1, 2] # Rank 2 [1, 2, 1, 1] # Rank 3 >>> input = list(input.split(input_splits)) >>> input [tensor([0, 1]), tensor([2, 3]), tensor([4]), tensor([5])] # Rank 0 [tensor([10, 11, 12]), tensor([13, 14]), tensor([15, 16]), tensor([17, 18])] # Rank 1 [tensor([20, 21]), tensor([22]), tensor([23]), tensor([24])] # Rank 2 [tensor([30, 31]), tensor([32, 33]), tensor([34, 35]), tensor([36])] # Rank 3 >>> output = ... >>> dist.all_to_all(output, input) >>> output [tensor([0, 1]), tensor([10, 11, 12]), tensor([20, 21]), tensor([30, 31])] # Rank 0 [tensor([2, 3]), tensor([13, 14]), tensor([22]), tensor([32, 33])] # Rank 1 [tensor([4]), tensor([15, 16]), tensor([23]), tensor([34, 35])] # Rank 2 [tensor([5]), tensor([17, 18]), tensor([24]), tensor([36])] # Rank 3 """ if _rank_not_in_group(group): return opts = AllToAllOptions() _check_tensor_list(output_tensor_list, "output_tensor_list") _check_tensor_list(input_tensor_list, "input_tensor_list") if group == GroupMember.WORLD: _check_default_pg() work = _default_pg.alltoall(output_tensor_list, input_tensor_list, opts) else: work = group.alltoall(output_tensor_list, input_tensor_list, opts) if async_op: return work else: work.wait()
[docs]def barrier(group=group.WORLD, async_op=False): """ Synchronizes all processes. This collective blocks processes until the whole group enters this function, if async_op is False, or if async work handle is called on wait(). Arguments: group (ProcessGroup, optional): The process group to work on async_op (bool, optional): Whether this op should be an async op Returns: Async work handle, if async_op is set to True. None, if not async_op or if not part of the group """ if _rank_not_in_group(group): return if group == GroupMember.WORLD: _check_default_pg() work = _default_pg.barrier() else: work = group.barrier() if async_op: return work else: work.wait()
[docs]def new_group(ranks=None, timeout=default_pg_timeout, backend=None): """ Creates a new distributed group. This function requires that all processes in the main group (i.e. all processes that are part of the distributed job) enter this function, even if they are not going to be members of the group. Additionally, groups should be created in the same order in all processes. Arguments: ranks (list[int]): List of ranks of group members. If ``None``, will be set to all ranks. Default is ``None``. timeout (timedelta, optional): Timeout for operations executed against the process group. Default value equals 30 minutes. This is only applicable for the ``gloo`` backend. backend (str or Backend, optional): The backend to use. Depending on build-time configurations, valid values are ``gloo`` and ``nccl``. By default uses the same backend as the global group. This field should be given as a lowercase string (e.g., ``"gloo"``), which can also be accessed via :class:`Backend` attributes (e.g., ``Backend.GLOO``). Returns: A handle of distributed group that can be given to collective calls. """ _check_default_pg() global _pg_group_ranks default_backend, default_store = _pg_map[_default_pg] global_rank = _default_pg.rank() global_world_size = _default_pg.size() # Default to the same backend as the global process group # if the backend is not specified. if not backend: backend = default_backend # checks the input ranks if ranks is not None: ranks = sorted(ranks) group_world_size = len(ranks) if group_world_size > global_world_size: raise RuntimeError("the new group's world size should be less or " "equal to the world size set by " "init_process_group") # check ranks' sanity for rank in ranks: if rank < 0 or rank >= global_world_size: raise RuntimeError("The new group's rank should be within the " "the world_size set by init_process_group") if global_rank in ranks: group_rank = ranks.index(global_rank) else: group_rank = None else: ranks = list(range(global_world_size)) group_world_size = global_world_size group_rank = global_rank backend = Backend(backend) pg = _new_process_group_helper(group_world_size, group_rank, ranks, backend, default_store, timeout=timeout) # Create the global rank to group rank mapping _pg_group_ranks[pg] = { global_rank: group_rank for group_rank, global_rank in enumerate(ranks) } # barrier at the end to ensure that once we return from this method, all # process groups including global variables are updated correctly on all # ranks. barrier() return pg

此页内容是否对您有帮助