API

 _modules/torch.distributions.categorical


Source code for torch.distributions.categorical

import torch
from torch._six import nan
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.utils import probs_to_logits, logits_to_probs, lazy_property


[docs]class Categorical(Distribution): r""" Creates a categorical distribution parameterized by either :attr:`probs` or :attr:`logits` (but not both). .. note:: It is equivalent to the distribution that :func:`torch.multinomial` samples from. Samples are integers from :math:`\{0, \ldots, K-1\}` where `K` is ``probs.size(-1)``. If :attr:`probs` is 1D with length-`K`, each element is the relative probability of sampling the class at that index. If :attr:`probs` is 2D, it is treated as a batch of relative probability vectors. .. note:: :attr:`probs` must be non-negative, finite and have a non-zero sum, and it will be normalized to sum to 1. See also: :func:`torch.multinomial` Example:: >>> m = Categorical(torch.tensor([ 0.25, 0.25, 0.25, 0.25 ])) >>> m.sample() # equal probability of 0, 1, 2, 3 tensor(3) Args: probs (Tensor): event probabilities logits (Tensor): event log-odds """ arg_constraints = {'probs': constraints.simplex, 'logits': constraints.real} has_enumerate_support = True def __init__(self, probs=None, logits=None, validate_args=None): if (probs is None) == (logits is None): raise ValueError("Either `probs` or `logits` must be specified, but not both.") if probs is not None: if probs.dim() < 1: raise ValueError("`probs` parameter must be at least one-dimensional.") self.probs = probs / probs.sum(-1, keepdim=True) else: if logits.dim() < 1: raise ValueError("`logits` parameter must be at least one-dimensional.") # Normalize self.logits = logits - logits.logsumexp(dim=-1, keepdim=True) self._param = self.probs if probs is not None else self.logits self._num_events = self._param.size()[-1] batch_shape = self._param.size()[:-1] if self._param.ndimension() > 1 else torch.Size() super(Categorical, self).__init__(batch_shape, validate_args=validate_args)
[docs] def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(Categorical, _instance) batch_shape = torch.Size(batch_shape) param_shape = batch_shape + torch.Size((self._num_events,)) if 'probs' in self.__dict__: new.probs = self.probs.expand(param_shape) new._param = new.probs if 'logits' in self.__dict__: new.logits = self.logits.expand(param_shape) new._param = new.logits new._num_events = self._num_events super(Categorical, new).__init__(batch_shape, validate_args=False) new._validate_args = self._validate_args return new
def _new(self, *args, **kwargs): return self._param.new(*args, **kwargs) @constraints.dependent_property def support(self): return constraints.integer_interval(0, self._num_events - 1)
[docs] @lazy_property def logits(self): return probs_to_logits(self.probs)
[docs] @lazy_property def probs(self): return logits_to_probs(self.logits)
@property def param_shape(self): return self._param.size() @property def mean(self): return torch.full(self._extended_shape(), nan, dtype=self.probs.dtype, device=self.probs.device) @property def variance(self): return torch.full(self._extended_shape(), nan, dtype=self.probs.dtype, device=self.probs.device)
[docs] def sample(self, sample_shape=torch.Size()): if not isinstance(sample_shape, torch.Size): sample_shape = torch.Size(sample_shape) probs_2d = self.probs.reshape(-1, self._num_events) samples_2d = torch.multinomial(probs_2d, sample_shape.numel(), True).T return samples_2d.reshape(self._extended_shape(sample_shape))
[docs] def log_prob(self, value): if self._validate_args: self._validate_sample(value) value = value.long().unsqueeze(-1) value, log_pmf = torch.broadcast_tensors(value, self.logits) value = value[..., :1] return log_pmf.gather(-1, value).squeeze(-1)
[docs] def entropy(self): min_real = torch.finfo(self.logits.dtype).min logits = torch.clamp(self.logits, min=min_real) p_log_p = logits * self.probs return -p_log_p.sum(-1)
[docs] def enumerate_support(self, expand=True): num_events = self._num_events values = torch.arange(num_events, dtype=torch.long, device=self._param.device) values = values.view((-1,) + (1,) * len(self._batch_shape)) if expand: values = values.expand((-1,) + self._batch_shape) return values

此页内容是否对您有帮助