API

 torch / torch


torch.clamp

torch.clamp(input, min, max, *, out=None) → Tensor

Clamp all elements in input into the range [ min, max ] and return a resulting tensor:

yi={minif xi<minxiif minximaxmaxif xi>maxy_i = \begin{cases} \text{min} & \text{if } x_i < \text{min} \\ x_i & \text{if } \text{min} \leq x_i \leq \text{max} \\ \text{max} & \text{if } x_i > \text{max} \end{cases}

If input is of type FloatTensor or DoubleTensor, args min and max must be real numbers, otherwise they should be integers.

Parameters
  • input (Tensor) – the input tensor.

  • min (Number) – lower-bound of the range to be clamped to

  • max (Number) – upper-bound of the range to be clamped to

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> a = torch.randn(4)
>>> a
tensor([-1.7120,  0.1734, -0.0478, -0.0922])
>>> torch.clamp(a, min=-0.5, max=0.5)
tensor([-0.5000,  0.1734, -0.0478, -0.0922])
torch.clamp(input, *, min, out=None) → Tensor

Clamps all elements in input to be larger or equal min.

If input is of type FloatTensor or DoubleTensor, value should be a real number, otherwise it should be an integer.

Parameters

input (Tensor) – the input tensor.

Keyword Arguments
  • min (Number) – minimal value of each element in the output

  • out (Tensor, optional) – the output tensor.

Example:

>>> a = torch.randn(4)
>>> a
tensor([-0.0299, -2.3184,  2.1593, -0.8883])
>>> torch.clamp(a, min=0.5)
tensor([ 0.5000,  0.5000,  2.1593,  0.5000])
torch.clamp(input, *, max, out=None) → Tensor

Clamps all elements in input to be smaller or equal max.

If input is of type FloatTensor or DoubleTensor, value should be a real number, otherwise it should be an integer.

Parameters

input (Tensor) – the input tensor.

Keyword Arguments
  • max (Number) – maximal value of each element in the output

  • out (Tensor, optional) – the output tensor.

Example:

>>> a = torch.randn(4)
>>> a
tensor([ 0.7753, -0.4702, -0.4599,  1.1899])
>>> torch.clamp(a, max=0.5)
tensor([ 0.5000, -0.4702, -0.4599,  0.5000])

此页内容是否对您有帮助