PyTorch
torch / torch
torch.det¶
-
torch.
det
(input) → Tensor¶ Calculates determinant of a square matrix or batches of square matrices.
Note
Backward through
det()
internally uses SVD results wheninput
is not invertible. In this case, double backward throughdet()
will be unstable in wheninput
doesn’t have distinct singular values. Seesvd()
for details.- Parameters
input (Tensor) – the input tensor of size
(*, n, n)
where*
is zero or more batch dimensions.
Example:
>>> A = torch.randn(3, 3) >>> torch.det(A) tensor(3.7641) >>> A = torch.randn(3, 2, 2) >>> A tensor([[[ 0.9254, -0.6213], [-0.5787, 1.6843]], [[ 0.3242, -0.9665], [ 0.4539, -0.0887]], [[ 1.1336, -0.4025], [-0.7089, 0.9032]]]) >>> A.det() tensor([1.1990, 0.4099, 0.7386])
此页内容是否对您有帮助
感谢反馈!