API

 torch / torch


torch.det

torch.det(input) → Tensor

Calculates determinant of a square matrix or batches of square matrices.

Note

Backward through det() internally uses SVD results when input is not invertible. In this case, double backward through det() will be unstable in when input doesn’t have distinct singular values. See svd() for details.

Parameters

input (Tensor) – the input tensor of size (*, n, n) where * is zero or more batch dimensions.

Example:

>>> A = torch.randn(3, 3)
>>> torch.det(A)
tensor(3.7641)

>>> A = torch.randn(3, 2, 2)
>>> A
tensor([[[ 0.9254, -0.6213],
         [-0.5787,  1.6843]],

        [[ 0.3242, -0.9665],
         [ 0.4539, -0.0887]],

        [[ 1.1336, -0.4025],
         [-0.7089,  0.9032]]])
>>> A.det()
tensor([1.1990, 0.4099, 0.7386])

此页内容是否对您有帮助