API

 torch / torch


torch.lstsq

torch.lstsq(input, A, *, out=None) → Tensor

Computes the solution to the least squares and least norm problems for a full rank matrix AA of size (m×n)(m \times n) and a matrix BB of size (m×k)(m \times k) .

If mnm \geq n , lstsq() solves the least-squares problem:

minXAXB2.\begin{array}{ll} \min_X & \|AX-B\|_2. \end{array}

If m<nm < n , lstsq() solves the least-norm problem:

minXX2subject toAX=B.\begin{array}{ll} \min_X & \|X\|_2 & \text{subject to} & AX = B. \end{array}

Returned tensor XX has shape (max(m,n)×k)(\max(m, n) \times k) . The first nn rows of XX contains the solution. If mnm \geq n , the residual sum of squares for the solution in each column is given by the sum of squares of elements in the remaining mnm - n rows of that column.

Note

The case when m<nm < n is not supported on the GPU.

Parameters
  • input (Tensor) – the matrix BB

  • A (Tensor) – the mm by nn matrix AA

Keyword Arguments

out (tuple, optional) – the optional destination tensor

Returns

A namedtuple (solution, QR) containing:

  • solution (Tensor): the least squares solution

  • QR (Tensor): the details of the QR factorization

Return type

(Tensor, Tensor)

Note

The returned matrices will always be transposed, irrespective of the strides of the input matrices. That is, they will have stride (1, m) instead of (m, 1).

Example:

>>> A = torch.tensor([[1., 1, 1],
                      [2, 3, 4],
                      [3, 5, 2],
                      [4, 2, 5],
                      [5, 4, 3]])
>>> B = torch.tensor([[-10., -3],
                      [ 12, 14],
                      [ 14, 12],
                      [ 16, 16],
                      [ 18, 16]])
>>> X, _ = torch.lstsq(B, A)
>>> X
tensor([[  2.0000,   1.0000],
        [  1.0000,   1.0000],
        [  1.0000,   2.0000],
        [ 10.9635,   4.8501],
        [  8.9332,   5.2418]])

此页内容是否对您有帮助