torch / nn / torch.nn
Conv1d¶
-
class
torch.nn.
Conv1d
(in_channels: int, out_channels: int, kernel_size: Union[T, Tuple[T]], stride: Union[T, Tuple[T]] = 1, padding: Union[T, Tuple[T]] = 0, dilation: Union[T, Tuple[T]] = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros')[source]¶ Applies a 1D convolution over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size and output can be precisely described as:
where is the valid cross-correlation operator, is a batch size, denotes a number of channels, is a length of signal sequence.
This module supports TensorFloat32.
stride
controls the stride for the cross-correlation, a single number or a one-element tuple.padding
controls the amount of implicit zero-paddings on both sides forpadding
number of points.dilation
controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of whatdilation
does.groups
controls the connections between inputs and outputs.in_channels
andout_channels
must both be divisible bygroups
. For example,At groups=1, all inputs are convolved to all outputs.
At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
At groups=
in_channels
, each input channel is convolved with its own set of filters, of size .
Note
Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid cross-correlation, and not a full cross-correlation. It is up to the user to add proper padding.
Note
When groups == in_channels and out_channels == K * in_channels, where K is a positive integer, this operation is also termed in literature as depthwise convolution.
In other words, for an input of size , a depthwise convolution with a depthwise multiplier K, can be constructed by arguments .
Note
In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting
torch.backends.cudnn.deterministic = True
. Please see the notes on Reproducibility for background.- Parameters
in_channels (int) – Number of channels in the input image
out_channels (int) – Number of channels produced by the convolution
stride (int or tuple, optional) – Stride of the convolution. Default: 1
padding (int or tuple, optional) – Zero-padding added to both sides of the input. Default: 0
padding_mode (string, optional) –
'zeros'
,'reflect'
,'replicate'
or'circular'
. Default:'zeros'
dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1
groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
bias (bool, optional) – If
True
, adds a learnable bias to the output. Default:True
- Shape:
Input:
Output: where
- Variables
Examples:
>>> m = nn.Conv1d(16, 33, 3, stride=2) >>> input = torch.randn(20, 16, 50) >>> output = m(input)
此页内容是否对您有帮助