torch / nn / torch.nn
ModuleList¶
-
class
torch.nn.
ModuleList
(modules: Optional[Iterable[torch.nn.modules.module.Module]] = None)[source]¶ Holds submodules in a list.
ModuleList
can be indexed like a regular Python list, but modules it contains are properly registered, and will be visible by allModule
methods.- Parameters
modules (iterable, optional) – an iterable of modules to add
Example:
class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)]) def forward(self, x): # ModuleList can act as an iterable, or be indexed using ints for i, l in enumerate(self.linears): x = self.linears[i // 2](x) + l(x) return x
-
append
(module: torch.nn.modules.module.Module) → T[source]¶ Appends a given module to the end of the list.
- Parameters
module (nn.Module) – module to append
此页内容是否对您有帮助