torch / nn / torch.nn
ParameterList¶
-
class
torch.nn.
ParameterList
(parameters: Optional[Iterable[Parameter]] = None)[source]¶ Holds parameters in a list.
ParameterList
can be indexed like a regular Python list, but parameters it contains are properly registered, and will be visible by allModule
methods.- Parameters
parameters (iterable, optional) – an iterable of
Parameter
to add
Example:
class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() self.params = nn.ParameterList([nn.Parameter(torch.randn(10, 10)) for i in range(10)]) def forward(self, x): # ParameterList can act as an iterable, or be indexed using ints for i, p in enumerate(self.params): x = self.params[i // 2].mm(x) + p.mm(x) return x
此页内容是否对您有帮助