torch / nn / torch.nn
TransformerDecoder¶
-
class
torch.nn.
TransformerDecoder
(decoder_layer, num_layers, norm=None)[source]¶ TransformerDecoder is a stack of N decoder layers
- Parameters
decoder_layer – an instance of the TransformerDecoderLayer() class (required).
num_layers – the number of sub-decoder-layers in the decoder (required).
norm – the layer normalization component (optional).
- Examples::
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8) >>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6) >>> memory = torch.rand(10, 32, 512) >>> tgt = torch.rand(20, 32, 512) >>> out = transformer_decoder(tgt, memory)
-
forward
(tgt: torch.Tensor, memory: torch.Tensor, tgt_mask: Optional[torch.Tensor] = None, memory_mask: Optional[torch.Tensor] = None, tgt_key_padding_mask: Optional[torch.Tensor] = None, memory_key_padding_mask: Optional[torch.Tensor] = None) → torch.Tensor[source]¶ Pass the inputs (and mask) through the decoder layer in turn.
- Parameters
tgt – the sequence to the decoder (required).
memory – the sequence from the last layer of the encoder (required).
tgt_mask – the mask for the tgt sequence (optional).
memory_mask – the mask for the memory sequence (optional).
tgt_key_padding_mask – the mask for the tgt keys per batch (optional).
memory_key_padding_mask – the mask for the memory keys per batch (optional).
- Shape:
see the docs in Transformer class.
此页内容是否对您有帮助