torch / nn / torch.nn
UpsamplingBilinear2d¶
-
class
torch.nn.
UpsamplingBilinear2d
(size: Optional[Union[T, Tuple[T, T]]] = None, scale_factor: Optional[Union[T, Tuple[T, T]]] = None)[source]¶ Applies a 2D bilinear upsampling to an input signal composed of several input channels.
To specify the scale, it takes either the
size
or thescale_factor
as it’s constructor argument.When
size
is given, it is the output size of the image (h, w).- Parameters
Warning
This class is deprecated in favor of
interpolate()
. It is equivalent tonn.functional.interpolate(..., mode='bilinear', align_corners=True)
.- Shape:
Input:
Output: where
Examples:
>>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2) >>> input tensor([[[[ 1., 2.], [ 3., 4.]]]]) >>> m = nn.UpsamplingBilinear2d(scale_factor=2) >>> m(input) tensor([[[[ 1.0000, 1.3333, 1.6667, 2.0000], [ 1.6667, 2.0000, 2.3333, 2.6667], [ 2.3333, 2.6667, 3.0000, 3.3333], [ 3.0000, 3.3333, 3.6667, 4.0000]]]])
此页内容是否对您有帮助