torch / nn / torch.nn
torch.nn.utils.prune.global_unstructured¶
-
torch.nn.utils.prune.
global_unstructured
(parameters, pruning_method, **kwargs)[source]¶ Globally prunes tensors corresponding to all parameters in
parameters
by applying the specifiedpruning_method
. Modifies modules in place by: 1) adding a named buffer calledname+'_mask'
corresponding to the binary mask applied to the parametername
by the pruning method. 2) replacing the parametername
by its pruned version, while the original (unpruned) parameter is stored in a new parameter namedname+'_orig'
.- Parameters
parameters (Iterable of (module, name) tuples) – parameters of the model to prune in a global fashion, i.e. by aggregating all weights prior to deciding which ones to prune. module must be of type
nn.Module
, and name must be a string.pruning_method (function) – a valid pruning function from this module, or a custom one implemented by the user that satisfies the implementation guidelines and has
PRUNING_TYPE='unstructured'
.kwargs – other keyword arguments such as: amount (int or float): quantity of parameters to prune across the specified parameters. If
float
, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. Ifint
, it represents the absolute number of parameters to prune.
- Raises
TypeError – if
PRUNING_TYPE != 'unstructured'
Note
Since global structured pruning doesn’t make much sense unless the norm is normalized by the size of the parameter, we now limit the scope of global pruning to unstructured methods.
Examples
>>> net = nn.Sequential(OrderedDict([ ('first', nn.Linear(10, 4)), ('second', nn.Linear(4, 1)), ])) >>> parameters_to_prune = ( (net.first, 'weight'), (net.second, 'weight'), ) >>> prune.global_unstructured( parameters_to_prune, pruning_method=prune.L1Unstructured, amount=10, ) >>> print(sum(torch.nn.utils.parameters_to_vector(net.buffers()) == 0)) tensor(10, dtype=torch.uint8)
此页内容是否对您有帮助