torch / torch
torch.range¶
-
torch.
range
(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor¶ Returns a 1-D tensor of size with values from
start
toend
with stepstep
. Step is the gap between two values in the tensor.Warning
This function is deprecated and will be removed in a future release because its behavior is inconsistent with Python’s range builtin. Instead, use
torch.arange()
, which produces values in [start, end).- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_tensor_type()
). If dtype is not given, infer the data type from the other input arguments. If any of start, end, or stop are floating-point, the dtype is inferred to be the default dtype, seeget_default_dtype()
. Otherwise, the dtype is inferred to be torch.int64.layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
Example:
>>> torch.range(1, 4) tensor([ 1., 2., 3., 4.]) >>> torch.range(1, 4, 0.5) tensor([ 1.0000, 1.5000, 2.0000, 2.5000, 3.0000, 3.5000, 4.0000])
此页内容是否对您有帮助