TensorFlow 1 version |
Public API for tf.layers namespace.
Modules
experimental
module: Public API for tf.layers.experimental namespace.
Classes
class AveragePooling1D
: Average Pooling layer for 1D inputs.
class AveragePooling2D
: Average pooling layer for 2D inputs (e.g. images).
class AveragePooling3D
: Average pooling layer for 3D inputs (e.g. volumes).
class BatchNormalization
: Batch Normalization layer from (Ioffe et al., 2015).
class Conv1D
: 1D convolution layer (e.g. temporal convolution).
class Conv2D
: 2D convolution layer (e.g. spatial convolution over images).
class Conv2DTranspose
: Transposed 2D convolution layer (sometimes called 2D Deconvolution).
class Conv3D
: 3D convolution layer (e.g. spatial convolution over volumes).
class Conv3DTranspose
: Transposed 3D convolution layer (sometimes called 3D Deconvolution).
class Dense
: Densely-connected layer class.
class Dropout
: Applies Dropout to the input.
class Flatten
: Flattens an input tensor while preserving the batch axis (axis 0).
class InputSpec
: Specifies the rank, dtype and shape of every input to a layer.
class Layer
: Base layer class.
class MaxPooling1D
: Max Pooling layer for 1D inputs.
class MaxPooling2D
: Max pooling layer for 2D inputs (e.g. images).
class MaxPooling3D
: Max pooling layer for 3D inputs (e.g. volumes).
class SeparableConv1D
: Depthwise separable 1D convolution.
class SeparableConv2D
: Depthwise separable 2D convolution.
Functions
average_pooling1d(...)
: Average Pooling layer for 1D inputs.
average_pooling2d(...)
: Average pooling layer for 2D inputs (e.g. images).
average_pooling3d(...)
: Average pooling layer for 3D inputs (e.g. volumes).
batch_normalization(...)
: Functional interface for the batch normalization layer from_config(Ioffe et al., 2015).
conv1d(...)
: Functional interface for 1D convolution layer (e.g. temporal convolution).
conv2d(...)
: Functional interface for the 2D convolution layer.
conv2d_transpose(...)
: Functional interface for transposed 2D convolution layer.
conv3d(...)
: Functional interface for the 3D convolution layer.
conv3d_transpose(...)
: Functional interface for transposed 3D convolution layer.
dense(...)
: Functional interface for the densely-connected layer.
dropout(...)
: Applies Dropout to the input.
flatten(...)
: Flattens an input tensor while preserving the batch axis (axis 0).
max_pooling1d(...)
: Max Pooling layer for 1D inputs.
max_pooling2d(...)
: Max pooling layer for 2D inputs (e.g. images).
max_pooling3d(...)
: Max pooling layer for 3D inputs (e.g.
separable_conv1d(...)
: Functional interface for the depthwise separable 1D convolution layer.
separable_conv2d(...)
: Functional interface for the depthwise separable 2D convolution layer.