Global average pooling operation for temporal data.
Inherits From: Layer
, Module
tf.keras.layers.GlobalAveragePooling1D(
data_format='channels_last', **kwargs
)
Used in the notebooks
Used in the guide |
Used in the tutorials |
|
|
Examples:
input_shape = (2, 3, 4)
x = tf.random.normal(input_shape)
y = tf.keras.layers.GlobalAveragePooling1D()(x)
print(y.shape)
(2, 4)
Arguments |
data_format
|
A string,
one of channels_last (default) or channels_first .
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, steps, features) while channels_first
corresponds to inputs with shape
(batch, features, steps) .
|
Call arguments:
inputs
: A 3D tensor.
mask
: Binary tensor of shape (batch_size, steps)
indicating whether
a given step should be masked (excluded from the average).
- If
data_format='channels_last'
:
3D tensor with shape:
(batch_size, steps, features)
- If
data_format='channels_first'
:
3D tensor with shape:
(batch_size, features, steps)
Output shape:
2D tensor with shape (batch_size, features)
.