TensorFlow 1 version | View source on GitHub |
Layer normalization layer (Ba et al., 2016).
tf.keras.layers.LayerNormalization(
axis=-1, epsilon=0.001, center=True, scale=True,
beta_initializer='zeros', gamma_initializer='ones',
beta_regularizer=None, gamma_regularizer=None, beta_constraint=None,
gamma_constraint=None, trainable=True, name=None, **kwargs
)
Used in the notebooks
Used in the tutorials |
---|
Normalize the activations of the previous layer for each given example in a batch independently, rather than across a batch like Batch Normalization. i.e. applies a transformation that maintains the mean activation within each example close to 0 and the activation standard deviation close to 1.
Given a tensor inputs
, moments are calculated and normalization
is performed across the axes specified in axis
.
Example:
data = tf.constant(np.arange(10).reshape(5, 2) * 10, dtype=tf.float32)
print(data)
tf.Tensor(
[[ 0. 10.]
[20. 30.]
[40. 50.]
[60. 70.]
[80. 90.]], shape=(5, 2), dtype=float32)
layer = tf.keras.layers.LayerNormalization(axis=1)
output = layer(data)
print(output)
tf.Tensor(
[[-1. 1.]
[-1. 1.]
[-1. 1.]
[-1. 1.]
[-1. 1.]], shape=(5, 2), dtype=float32)
Notice that with Layer Normalization the normalization happens across the axes within each example, rather than across different examples in the batch.
If scale
or center
are enabled, the layer will scale the normalized
outputs by broadcasting them with a trainable variable gamma
, and center
the outputs by broadcasting with a trainable variable beta
. gamma
will
default to a ones tensor and beta
will default to a zeros tensor, so that
centering and scaling are no-ops before training has begun.
So, with scaling and centering enabled the normalization equations
are as follows:
Let the intermediate activations for a mini-batch to be the inputs
.
For each sample x_i
in inputs
with k
features, we compute the mean and
variance of the sample:
mean_i = sum(x_i[j] for j in range(k)) / k
var_i = sum((x_i[j] - mean_i) ** 2 for j in range(k)) / k
and then compute a normalized x_i_normalized
, including a small factor
epsilon
for numerical stability.
x_i_normalized = (x_i - mean_i) / sqrt(var_i + epsilon)
And finally x_i_normalized
is linearly transformed by gamma
and beta
,
which are learned parameters:
output_i = x_i_normalized * gamma + beta
gamma
and beta
will span the axes of inputs
specified in axis
, and
this part of the inputs' shape must be fully defined.
For example:
layer = tf.keras.layers.LayerNormalization(axis=[1, 2, 3])
layer.build([5, 20, 30, 40])
print(layer.beta.shape)
(20, 30, 40)
print(layer.gamma.shape)
(20, 30, 40)
Note that other implementations of layer normalization may choose to define
gamma
and beta
over a separate set of axes from the axes being
normalized across. For example, Group Normalization
(Wu et al. 2018) with group size of 1
corresponds to a Layer Normalization that normalizes across height, width,
and channel and has gamma
and beta
span only the channel dimension.
So, this Layer Normalization implementation will not match a Group
Normalization layer with group size set to 1.
Arguments | |
---|---|
axis
|
Integer or List/Tuple. The axis or axes to normalize across. Typically
this is the features axis/axes. The left-out axes are typically the batch
axis/axes. This argument defaults to -1 , the last dimension in the
input.
|
epsilon
|
Small float added to variance to avoid dividing by zero. Defaults to 1e-3 |
center
|
If True, add offset of beta to normalized tensor. If False, beta
is ignored. Defaults to True.
|
scale
|
If True, multiply by gamma . If False, gamma is not used. Defaults
to True. When the next layer is linear (also e.g. nn.relu ), this can be
disabled since the scaling will be done by the next layer.
|
beta_initializer
|
Initializer for the beta weight. Defaults to zeros. |
gamma_initializer
|
Initializer for the gamma weight. Defaults to ones. |
beta_regularizer
|
Optional regularizer for the beta weight. None by default. |
gamma_regularizer
|
Optional regularizer for the gamma weight. None by default. |
beta_constraint
|
Optional constraint for the beta weight. None by default. |
gamma_constraint
|
Optional constraint for the gamma weight. None by default. |
trainable
|
Boolean, if True the variables will be marked as trainable.
Defaults to True.
|
Input shape: Arbitrary. Use the keyword argument input_shape
(tuple of
integers, does not include the samples axis) when using this layer as the
first layer in a model.
Output shape: Same shape as input.
Reference: