Optimizer that implements the Adagrad algorithm.
Inherits From: Optimizer
tf.keras.optimizers.Adagrad(
learning_rate=0.001, initial_accumulator_value=0.1, epsilon=1e-07,
name='Adagrad', **kwargs
)
Used in the notebooks
Adagrad is an optimizer with parameter-specific learning rates,
which are adapted relative to how frequently a parameter gets
updated during training. The more updates a parameter receives,
the smaller the updates.
Args |
learning_rate
|
A Tensor , floating point value, or a schedule that is a
tf.keras.optimizers.schedules.LearningRateSchedule . The learning rate.
|
initial_accumulator_value
|
A floating point value.
Starting value for the accumulators, must be non-negative.
|
epsilon
|
A small floating point value to avoid zero denominator.
|
name
|
Optional name prefix for the operations created when applying
gradients. Defaults to "Adagrad" .
|
**kwargs
|
Keyword arguments. Allowed to be one of
"clipnorm" or "clipvalue" .
"clipnorm" (float) clips gradients by norm; "clipvalue" (float) clips
gradients by value.
|
Reference:
Raises |
ValueError
|
in case of any invalid argument.
|