TensorFlow 1 version | View source on GitHub |
3D convolution layer (e.g. spatial convolution over volumes).
tf.keras.layers.Conv3D(
filters, kernel_size, strides=(1, 1, 1), padding='valid',
data_format=None, dilation_rate=(1, 1, 1), groups=1, activation=None,
use_bias=True, kernel_initializer='glorot_uniform',
bias_initializer='zeros', kernel_regularizer=None,
bias_regularizer=None, activity_regularizer=None, kernel_constraint=None,
bias_constraint=None, **kwargs
)
This layer creates a convolution kernel that is convolved
with the layer input to produce a tensor of
outputs. If use_bias
is True,
a bias vector is created and added to the outputs. Finally, if
activation
is not None
, it is applied to the outputs as well.
When using this layer as the first layer in a model,
provide the keyword argument input_shape
(tuple of integers, does not include the sample axis),
e.g. input_shape=(128, 128, 128, 1)
for 128x128x128 volumes
with a single channel,
in data_format="channels_last"
.
Examples:
# The inputs are 28x28x28 volumes with a single channel, and the
# batch size is 4
input_shape =(4, 28, 28, 28, 1)
x = tf.random.normal(input_shape)
y = tf.keras.layers.Conv3D(
2, 3, activation='relu', input_shape=input_shape[1:])(x)
print(y.shape)
(4, 26, 26, 26, 2)
# With extended batch shape [4, 7], e.g. a batch of 4 videos of 3D frames,
# with 7 frames per video.
input_shape = (4, 7, 28, 28, 28, 1)
x = tf.random.normal(input_shape)
y = tf.keras.layers.Conv3D(
2, 3, activation='relu', input_shape=input_shape[2:])(x)
print(y.shape)
(4, 7, 26, 26, 26, 2)
Arguments | |
---|---|
filters
|
Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution). |
kernel_size
|
An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions. |
strides
|
An integer or tuple/list of 3 integers, specifying the strides of
the convolution along each spatial dimension. Can be a single integer to
specify the same value for all spatial dimensions. Specifying any stride
value != 1 is incompatible with specifying any dilation_rate value != 1.
|
padding
|
one of "valid" or "same" (case-insensitive).
"valid" means no padding. "same" results in padding evenly to
the left/right or up/down of the input such that output has the same
height/width dimension as the input.
|
data_format
|
A string, one of channels_last (default) or channels_first .
The ordering of the dimensions in the inputs. channels_last corresponds
to inputs with shape batch_shape + (spatial_dim1, spatial_dim2,
spatial_dim3, channels) while channels_first corresponds to inputs with
shape batch_shape + (channels, spatial_dim1, spatial_dim2,
spatial_dim3) . It defaults to the image_data_format value found in your
Keras config file at ~/.keras/keras.json . If you never set it, then it
will be "channels_last".
|
dilation_rate
|
an integer or tuple/list of 3 integers, specifying the
dilation rate to use for dilated convolution. Can be a single integer to
specify the same value for all spatial dimensions. Currently, specifying
any dilation_rate value != 1 is incompatible with specifying any stride
value != 1.
|
groups
|
A positive integer specifying the number of groups in which the
input is split along the channel axis. Each group is convolved separately
with filters / groups filters. The output is the concatenation of all
the groups results along the channel axis. Input channels and filters
must both be divisible by groups .
|
activation
|
Activation function to use. If you don't specify anything, no
activation is applied (see keras.activations ).
|
use_bias
|
Boolean, whether the layer uses a bias vector. |
kernel_initializer
|
Initializer for the kernel weights matrix (see
keras.initializers ).
|
bias_initializer
|
Initializer for the bias vector (see
keras.initializers ).
|
kernel_regularizer
|
Regularizer function applied to the kernel weights
matrix (see keras.regularizers ).
|
bias_regularizer
|
Regularizer function applied to the bias vector (see
keras.regularizers ).
|
activity_regularizer
|
Regularizer function applied to the output of the
layer (its "activation") (see keras.regularizers ).
|
kernel_constraint
|
Constraint function applied to the kernel matrix (see
keras.constraints ).
|
bias_constraint
|
Constraint function applied to the bias vector (see
keras.constraints ).
|
Input shape:
5+D tensor with shape: batch_shape + (channels, conv_dim1, conv_dim2,
conv_dim3)
if data_format='channels_first'
or 5+D tensor with shape: batch_shape + (conv_dim1, conv_dim2, conv_dim3,
channels)
if data_format='channels_last'.
Output shape:
5+D tensor with shape: batch_shape + (filters, new_conv_dim1,
new_conv_dim2, new_conv_dim3)
if data_format='channels_first'
or 5+D tensor with shape: batch_shape + (new_conv_dim1, new_conv_dim2,
new_conv_dim3, filters)
if data_format='channels_last'. new_conv_dim1
,
new_conv_dim2
and new_conv_dim3
values might have changed due to
padding.
Returns | |
---|---|
A tensor of rank 5+ representing
activation(conv3d(inputs, kernel) + bias) .
|
Raises | |
---|---|
ValueError
|
if padding is "causal".
|
ValueError
|
when both strides > 1 and dilation_rate > 1 .
|