TensorFlow 1 version | View source on GitHub |
Cropping layer for 3D data (e.g. spatial or spatio-temporal).
tf.keras.layers.Cropping3D(
cropping=((1, 1), (1, 1), (1, 1)), data_format=None, **kwargs
)
Examples:
input_shape = (2, 28, 28, 10, 3)
x = np.arange(np.prod(input_shape)).reshape(input_shape)
y = tf.keras.layers.Cropping3D(cropping=(2, 4, 2))(x)
print(y.shape)
(2, 24, 20, 6, 3)
Arguments | |
---|---|
cropping
|
Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
|
data_format
|
A string,
one of channels_last (default) or channels_first .
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)
while channels_first corresponds to inputs with shape
(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3) .
It defaults to the image_data_format value found in your
Keras config file at ~/.keras/keras.json .
If you never set it, then it will be "channels_last".
|
Input shape:
5D tensor with shape:
- If
data_format
is"channels_last"
:(batch_size, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop, depth)
- If
data_format
is"channels_first"
:(batch_size, depth, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop)
Output shape:
5D tensor with shape:
- If
data_format
is"channels_last"
:(batch_size, first_cropped_axis, second_cropped_axis, third_cropped_axis, depth)
- If
data_format
is"channels_first"
:(batch_size, depth, first_cropped_axis, second_cropped_axis, third_cropped_axis)