TensorFlow 1 version | View source on GitHub |
A CategoricalColumn
with in-memory vocabulary.
tf.feature_column.categorical_column_with_vocabulary_list(
key, vocabulary_list, dtype=None, default_value=-1, num_oov_buckets=0
)
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
Use this when your inputs are in string or integer format, and you have an
in-memory vocabulary mapping each value to an integer ID. By default,
out-of-vocabulary values are ignored. Use either (but not both) of
num_oov_buckets
and default_value
to specify how to include
out-of-vocabulary values.
For input dictionary features
, features[key]
is either Tensor
or
SparseTensor
. If Tensor
, missing values can be represented by -1
for int
and ''
for string, which will be dropped by this feature column.
Example with num_oov_buckets
:
In the following example, each input in vocabulary_list
is assigned an ID
0-3 corresponding to its index (e.g., input 'B' produces output 2). All other
inputs are hashed and assigned an ID 4-5.
colors = categorical_column_with_vocabulary_list(
key='colors', vocabulary_list=('R', 'G', 'B', 'Y'),
num_oov_buckets=2)
columns = [colors, ...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction, _, _ = linear_model(features, columns)
Example with default_value
:
In the following example, each input in vocabulary_list
is assigned an ID
0-4 corresponding to its index (e.g., input 'B' produces output 3). All other
inputs are assigned default_value
0.
colors = categorical_column_with_vocabulary_list(
key='colors', vocabulary_list=('X', 'R', 'G', 'B', 'Y'), default_value=0)
columns = [colors, ...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction, _, _ = linear_model(features, columns)
And to make an embedding with either:
columns = [embedding_column(colors, 3),...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
Args | |
---|---|
key
|
A unique string identifying the input feature. It is used as the column
name and the dictionary key for feature parsing configs, feature Tensor
objects, and feature columns.
|
vocabulary_list
|
An ordered iterable defining the vocabulary. Each feature
is mapped to the index of its value (if present) in vocabulary_list .
Must be castable to dtype .
|
dtype
|
The type of features. Only string and integer types are supported. If
None , it will be inferred from vocabulary_list .
|
default_value
|
The integer ID value to return for out-of-vocabulary feature
values, defaults to -1 . This can not be specified with a positive
num_oov_buckets .
|
num_oov_buckets
|
Non-negative integer, the number of out-of-vocabulary
buckets. All out-of-vocabulary inputs will be assigned IDs in the range
[len(vocabulary_list), len(vocabulary_list)+num_oov_buckets) based on a
hash of the input value. A positive num_oov_buckets can not be specified
with default_value .
|
Returns | |
---|---|
A CategoricalColumn with in-memory vocabulary.
|
Raises | |
---|---|
ValueError
|
if vocabulary_list is empty, or contains duplicate keys.
|
ValueError
|
num_oov_buckets is a negative integer.
|
ValueError
|
num_oov_buckets and default_value are both specified.
|
ValueError
|
if dtype is not integer or string.
|