TensorFlow 1 version | View source on GitHub |
Returns the batched diagonal part of a batched tensor.
tf.linalg.diag_part(
input, name='diag_part', k=0, padding_value=0,
align='RIGHT_LEFT'
)
Used in the notebooks
Used in the tutorials |
---|
Returns a tensor with the k[0]
-th to k[1]
-th diagonals of the batched
input
.
Assume input
has r
dimensions [I, J, ..., L, M, N]
.
Let max_diag_len
be the maximum length among all diagonals to be extracted,
max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))
Let num_diags
be the number of diagonals to extract,
num_diags = k[1] - k[0] + 1
.
If num_diags == 1
, the output tensor is of rank r - 1
with shape
[I, J, ..., L, max_diag_len]
and values:
diagonal[i, j, ..., l, n]
= input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N,
padding_value ; otherwise.
where y = max(-k[1], 0)
, x = max(k[1], 0)
.
Otherwise, the output tensor has rank r
with dimensions
[I, J, ..., L, num_diags, max_diag_len]
with values:
diagonal[i, j, ..., l, m, n]
= input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N,
padding_value ; otherwise.
where d = k[1] - m
, y = max(-d, 0) - offset
, and x = max(d, 0) - offset
.
offset
is zero except when the alignment of the diagonal is to the right.
offset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT}
and `d >= 0`) or
(`align` in {LEFT_RIGHT, RIGHT_RIGHT}
and `d <= 0`)
0 ; otherwise
where diag_len(d) = min(cols - max(d, 0), rows + min(d, 0))
.
The input must be at least a matrix.
For example:
input = np.array([[[1, 2, 3, 4], # Input shape: (2, 3, 4)
[5, 6, 7, 8],
[9, 8, 7, 6]],
[[5, 4, 3, 2],
[1, 2, 3, 4],
[5, 6, 7, 8]]])
# A main diagonal from each batch.
tf.linalg.diag_part(input) ==> [[1, 6, 7], # Output shape: (2, 3)
[5, 2, 7]]
# A superdiagonal from each batch.
tf.linalg.diag_part(input, k = 1)
==> [[2, 7, 6], # Output shape: (2, 3)
[4, 3, 8]]
# A band from each batch.
tf.linalg.diag_part(input, k = (-1, 2))
==> [[[3, 8, 0], # Output shape: (2, 4, 3)
[2, 7, 6],
[1, 6, 7],
[0, 5, 8]],
[[3, 4, 0],
[4, 3, 8],
[5, 2, 7],
[0, 1, 6]]]
# RIGHT_LEFT alignment.
tf.linalg.diag_part(input, k = (-1, 2), align="RIGHT_LEFT")
==> [[[0, 3, 8], # Output shape: (2, 4, 3)
[2, 7, 6],
[1, 6, 7],
[5, 8, 0]],
[[0, 3, 4],
[4, 3, 8],
[5, 2, 7],
[1, 6, 0]]]
# max_diag_len can be shorter than the main diagonal.
tf.linalg.diag_part(input, k = (-2, -1))
==> [[[5, 8],
[0, 9]],
[[1, 6],
[0, 5]]]
# padding_value = 9
tf.linalg.diag_part(input, k = (1, 3), padding_value = 9)
==> [[[4, 9, 9], # Output shape: (2, 3, 3)
[3, 8, 9],
[2, 7, 6]],
[[2, 9, 9],
[3, 4, 9],
[4, 3, 8]]]
Args | |
---|---|
input
|
A Tensor with rank k >= 2 .
|
name
|
A name for the operation (optional). |
k
|
Diagonal offset(s). Positive value means superdiagonal, 0 refers to the
main diagonal, and negative value means subdiagonals. k can be a single
integer (for a single diagonal) or a pair of integers specifying the low
and high ends of a matrix band. k[0] must not be larger than k[1] .
|
padding_value
|
The value to fill the area outside the specified diagonal band with. Default is 0. |
align
|
Some diagonals are shorter than max_diag_len and need to be padded.
align is a string specifying how superdiagonals and subdiagonals should
be aligned, respectively. There are four possible alignments: "RIGHT_LEFT"
(default), "LEFT_RIGHT", "LEFT_LEFT", and "RIGHT_RIGHT". "RIGHT_LEFT"
aligns superdiagonals to the right (left-pads the row) and subdiagonals to
the left (right-pads the row). It is the packing format LAPACK uses.
cuSPARSE uses "LEFT_RIGHT", which is the opposite alignment.
|
Returns | |
---|---|
A Tensor containing diagonals of input . Has the same type as input .
|