TensorFlow 1 version | View source on GitHub |
Represents options for tf.data.Dataset
.
tf.data.Options()
Used in the notebooks
Used in the tutorials |
---|
A tf.data.Options
object can be, for instance, used to control which static
optimizations to apply to the input pipeline graph or whether to use
performance modeling to dynamically tune the parallelism of operations such as
tf.data.Dataset.map
or tf.data.Dataset.interleave
.
The options are set for the entire dataset and are carried over to datasets created through tf.data transformations.
The options can be set either by mutating the object returned by
tf.data.Dataset.options()
or by constructing an Options
object and using
the tf.data.Dataset.with_options(options)
transformation, which returns a
dataset with the options set.
dataset = tf.data.Dataset.range(42)
dataset.options().experimental_deterministic = False
print(dataset.options().experimental_deterministic)
False
dataset = tf.data.Dataset.range(42)
options = tf.data.Options()
options.experimental_deterministic = False
dataset = dataset.with_options(options)
print(dataset.options().experimental_deterministic)
False
Attributes | |
---|---|
experimental_deterministic
|
Whether the outputs need to be produced in deterministic order. If None, defaults to True. |
experimental_distribute
|
The distribution strategy options associated with the dataset. See tf.data.experimental.DistributeOptions for more details.
|
experimental_external_state_policy
|
This option can be used to override the default policy for how to handle external state when serializing a dataset or checkpointing its iterator. There are three settings available - IGNORE: in which we completely ignore any state; WARN: We warn the user that some state might be thrown away; FAIL: We fail if any state is being captured. |
experimental_optimization
|
The optimization options associated with the dataset. See tf.data.experimental.OptimizationOptions for more details.
|
experimental_slack
|
Whether to introduce 'slack' in the last prefetch of the input pipeline, if it exists. This may reduce CPU contention with accelerator host-side activity at the start of a step. The slack frequency is determined by the number of devices attached to this input pipeline. If None, defaults to False.
|
experimental_stats
|
The statistics options associated with the dataset. See tf.data.experimental.StatsOptions for more details.
|
experimental_threading
|
The threading options associated with the dataset. See tf.data.experimental.ThreadingOptions for more details.
|
Methods
merge
merge(
options
)
Merges itself with the given tf.data.Options
.
If this object and the options
to merge set an option differently, a
warning is generated and this object's value is updated with the options
object's value.
Args | |
---|---|
options
|
a tf.data.Options to merge with
|
Returns | |
---|---|
New tf.data.Options object which is the result of merging self with
the input tf.data.Options .
|
__eq__
__eq__(
other
)
Return self==value.
__ne__
__ne__(
other
)
Return self!=value.