TensorFlow

API

 tf.compat / v1 / v1.tpu.experimental.embedding_column


Optimization parameters for stochastic gradient descent for TPU embeddings.

Pass this to tf.estimator.tpu.experimental.EmbeddingConfigSpec via the optimization_parameters argument to set the optimizer and its parameters. See the documentation for tf.estimator.tpu.experimental.EmbeddingConfigSpec for more details.

estimator = tf.estimator.tpu.TPUEstimator(
    ...
    embedding_config_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec(
        ...
        optimization_parameters=(
            tf.tpu.experimental.StochasticGradientDescentParameters(0.1))))

learning_rate a floating point value. The learning rate.
clip_weight_min the minimum value to clip by; None means -infinity.
clip_weight_max the maximum value to clip by; None means +infinity.
weight_decay_factor amount of weight decay to apply; None means that the weights are not decayed.
multiply_weight_decay_factor_by_learning_rate if true, weight_decay_factor is multiplied by the current learning rate.
clip_gradient_min the minimum value to clip by; None means -infinity.
clip_gradient_max the maximum value to clip by; None means +infinity.

此页内容是否对您有帮助