Computes the gradients of convolution with respect to the filter.
tf.compat.v1.nn.conv2d_backprop_filter(
input, filter_sizes, out_backprop, strides, padding, use_cudnn_on_gpu=True,
data_format='NHWC', dilations=[1, 1, 1, 1], name=None
)
Args |
input
|
A Tensor . Must be one of the following types:
half , bfloat16 , float32 , float64 .
4-D with shape [batch, in_height, in_width, in_channels] .
|
filter_sizes
|
A Tensor of type int32 .
An integer vector representing the tensor shape of filter ,
where filter is a 4-D
[filter_height, filter_width, in_channels, out_channels] tensor.
|
out_backprop
|
A Tensor . Must have the same type as input .
4-D with shape [batch, out_height, out_width, out_channels] .
Gradients w.r.t. the output of the convolution.
|
strides
|
A list of ints .
The stride of the sliding window for each dimension of the input
of the convolution. Must be in the same order as the dimension specified
with format.
|
padding
|
Either the string "SAME"or "VALID"indicating the type of
padding algorithm to use, or a list indicating the explicit paddings at
the start and end of each dimension. When explicit padding is used and
data_format is "NHWC", this should be in the form [[0, 0], [pad_top,
pad_bottom], [pad_left, pad_right], [0, 0]]. When explicit padding used
and data_format is "NCHW", this should be in the form [[0, 0], [0, 0],
[pad_top, pad_bottom], [pad_left, pad_right]].
</td>
</tr><tr>
<td> use_cudnn_on_gpu</td>
<td>
An optional bool. Defaults to True.
</td>
</tr><tr>
<td> data_format</td>
<td>
An optional stringfrom: "NHWC", "NCHW".
Defaults to "NHWC".
Specify the data format of the input and output data. With the
default format "NHWC", the data is stored in the order of:
[batch, in_height, in_width, in_channels].
Alternatively, the format could be "NCHW", the data storage order of:
[batch, in_channels, in_height, in_width].
</td>
</tr><tr>
<td> dilations</td>
<td>
An optional list of ints. Defaults to [1, 1, 1, 1].
1-D tensor of length 4. The dilation factor for each dimension of input. If set to k > 1, there will be k-1 skipped cells between each
filter element on that dimension. The dimension order is determined by
the value of data_format, see above for details. Dilations in the batch
and depth dimensions must be 1.
</td>
</tr><tr>
<td> name`
|
A name for the operation (optional).
|
Returns |
A Tensor . Has the same type as input .
|