TensorFlow 1 version | View source on GitHub |
Applies an activation function to an output.
tf.keras.layers.Activation(
activation, **kwargs
)
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
Arguments | |
---|---|
activation
|
Activation function, such as tf.nn.relu , or string name of
built-in activation function, such as "relu".
|
Usage:
layer = tf.keras.layers.Activation('relu')
output = layer([-3.0, -1.0, 0.0, 2.0])
list(output.numpy())
[0.0, 0.0, 0.0, 2.0]
layer = tf.keras.layers.Activation(tf.nn.relu)
output = layer([-3.0, -1.0, 0.0, 2.0])
list(output.numpy())
[0.0, 0.0, 0.0, 2.0]
Input shape:
Arbitrary. Use the keyword argument input_shape
(tuple of integers, does not include the batch axis)
when using this layer as the first layer in a model.
Output shape:
Same shape as input.