TensorFlow 1 version | View source on GitHub |
Computes sigmoid of x
element-wise.
tf.math.sigmoid(
x, name=None
)
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
Formula for calculating $\mathrm{sigmoid}(x) = y = 1 / (1 + \exp(-x))$.
For $x \in (-\infty, \infty)$, $\mathrm{sigmoid}(x) \in (0, 1)$.
Example Usage:
If a positive number is large, then its sigmoid will approach to 1 since the
formula will be y = <large_num> / (1 + <large_num>)
x = tf.constant([0.0, 1.0, 50.0, 100.0])
tf.math.sigmoid(x)
<tf.Tensor: shape=(4,), dtype=float32,
numpy=array([0.5 , 0.7310586, 1. , 1. ], dtype=float32)>
If a negative number is large, its sigmoid will approach to 0 since the
formula will be y = 1 / (1 + <large_num>)
x = tf.constant([-100.0, -50.0, -1.0, 0.0])
tf.math.sigmoid(x)
<tf.Tensor: shape=(4,), dtype=float32, numpy=
array([0.0000000e+00, 1.9287499e-22, 2.6894143e-01, 0.5],
dtype=float32)>
Args | |
---|---|
x
|
A Tensor with type float16 , float32 , float64 , complex64 , or
complex128 .
|
name
|
A name for the operation (optional). |
Returns | |
---|---|
A Tensor with the same type as x .
|
Usage Example:
x = tf.constant([-128.0, 0.0, 128.0], dtype=tf.float32)
tf.sigmoid(x)
<tf.Tensor: shape=(3,), dtype=float32,
numpy=array([0. , 0.5, 1. ], dtype=float32)>
Scipy Compatibility
Equivalent to scipy.special.expit