PaddlePaddle

 paddle.nn / Conv3D


Conv3D

class paddle.nn. Conv3D ( in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', weight_attr=None, bias_attr=None, data_format='NCDHW' ) [源代码]

三维卷积层

该OP是三维卷积层(convolution3D layer),根据输入、卷积核、步长(stride)、填充(padding)、空洞大小(dilations)一组参数计算得到输出特征层大小。输入和输出是NCDHW或NDWHC格式,其中N是批尺寸,C是通道数,D是特征层深度,H是特征层高度,W是特征层宽度。三维卷积(Convlution3D)和二维卷积(Convlution2D)相似,但多了一维深度信息(depth)。如果bias_attr不为False,卷积计算会添加偏置项。

对每个输入X,有等式:

\[Out = \sigma \left ( W * X + b \right )\]
其中:
  • \(X\) :输入值,NCDHW或NDHWC格式的5-D Tensor

  • \(W\) :卷积核值,MCDHW格式的5-D Tensor

  • \(*\) :卷积操作

  • \(b\) :偏置值,2-D Tensor,形为 [M,1]

  • \(\sigma\) :激活函数

  • \(Out\) :输出值, NCDHW或NDHWC格式的5-D Tensor,和 X 的形状可能不同

参数:
  • in_channels (int) - 输入图像的通道数。

  • out_channels (int) - 由卷积操作产生的输出的通道数。

  • kernel_size (int|list|tuple) - 卷积核大小。可以为单个整数或包含三个整数的元组或列表,分别表示卷积核的深度,高和宽。如果为单个整数,表示卷积核的深度,高和宽都等于该整数。

  • stride (int|list|tuple,可选) - 步长大小。可以为单个整数或包含三个整数的元组或列表,分别表示卷积沿着深度,高和宽的步长。如果为单个整数,表示沿着高和宽的步长都等于该整数。默认值:1。

  • padding (int|list|tuple|str,可选) - 填充大小。如果它是一个字符串,可以是"VALID"或者"SAME",表示填充算法,计算细节可参考上述 padding = "SAME"或 padding = "VALID" 时的计算公式。如果它是一个元组或列表,它可以有3种格式:(1)包含5个二元组:当 data_format 为"NCDHW"时为 [[0,0], [0,0], [padding_depth_front, padding_depth_back], [padding_height_top, padding_height_bottom], [padding_width_left, padding_width_right]],当 data_format 为"NDHWC"时为[[0,0], [padding_depth_front, padding_depth_back], [padding_height_top, padding_height_bottom], [padding_width_left, padding_width_right], [0,0]];(2)包含6个整数值:[padding_depth_front, padding_depth_back, padding_height_top, padding_height_bottom, padding_width_left, padding_width_right];(3)包含3个整数值:[padding_depth, padding_height, padding_width],此时 padding_depth_front = padding_depth_back = padding_depth, padding_height_top = padding_height_bottom = padding_height, padding_width_left = padding_width_right = padding_width。若为一个整数,padding_depth = padding_height = padding_width = padding。默认值:0。

  • dilation (int|list|tuple,可选) - 空洞大小。可以为单个整数或包含三个整数的元组或列表,分别表示卷积核中的元素沿着深度,高和宽的空洞。如果为单个整数,表示深度,高和宽的空洞都等于该整数。默认值:1。

  • groups (int,可选) - 三维卷积层的组数。根据Alex Krizhevsky的深度卷积神经网络(CNN)论文中的成组卷积:当group=n,输入和卷积核分别根据通道数量平均分为n组,第一组卷积核和第一组输入进行卷积计算,第二组卷积核和第二组输入进行卷积计算,……,第n组卷积核和第n组输入进行卷积计算。默认值:1。

  • padding_mode (str, 可选): 填充模式。 包括 'zeros', 'reflect', 'replicate' 或者 'circular'. 默认值: 'zeros' .

  • weight_attr (ParamAttr,可选) - 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 ParamAttr

  • bias_attr (ParamAttr|bool,可选)- 指定偏置参数属性的对象。若 bias_attr 为bool类型,只支持为False,表示没有偏置参数。默认值为None,表示使用默认的偏置参数属性。具体用法请参见 ParamAttr

  • data_format (str,可选) - 指定输入的数据格式,输出的数据格式将与输入保持一致,可以是"NCDHW"和"NDHWC"。N是批尺寸,C是通道数,D是特征深度,H是特征高度,W是特征宽度。默认值:"NCDHW"。

属性

weight

本层的可学习参数,类型为 Parameter

bias

本层的可学习偏置,类型为 Parameter

形状:

  • 输入:\((N, C_{in}, D_{in}, H_{in}, W_{in})\)

  • 输出:\((N, C_{out}, D_{out}, H_{out}, W_{out})\)

其中

\[ \begin{align}\begin{aligned}D_{out} &= \frac{\left ( D_{in} + padding\_depth\_front + padding\_depth\_back-\left ( dilation[0]*\left ( kernel\_size[0]-1 \right )+1 \right ) \right )}{stride[0]}+1\\H_{out} &= \frac{\left ( H_{in} + padding\_height\_top + padding\_height\_bottom-\left ( dilation[1]*\left ( kernel\_size[1]-1 \right )+1 \right ) \right )}{stride[1]}+1\\W_{out} &= \frac{\left ( W_{in} + padding\_width\_left + padding\_width\_right -\left ( dilation[2]*\left ( kernel\_size[2]-1 \right )+1 \right ) \right )}{stride[2]}+1\end{aligned}\end{align} \]

如果 padding = "SAME":

\[ \begin{align}\begin{aligned}D_{out} = \frac{(D_{in} + stride[0] - 1)}{stride[0]}\\H_{out} = \frac{(H_{in} + stride[1] - 1)}{stride[1]}\\W_{out} = \frac{(W_{in} + stride[2] - 1)}{stride[2]}\end{aligned}\end{align} \]

如果 padding = "VALID":

\[ \begin{align}\begin{aligned}D_{out} = \frac{\left ( D_{in} -\left ( dilation[0]*\left ( kernel\_size[0]-1 \right )+1 \right ) \right )}{stride[0]}+1\\H_{out} = \frac{\left ( H_{in} -\left ( dilation[1]*\left ( kernel\_size[1]-1 \right )+1 \right ) \right )}{stride[1]}+1\\W_{out} = \frac{\left ( W_{in} -\left ( dilation[2]*\left ( kernel\_size[2]-1 \right )+1 \right ) \right )}{stride[2]}+1\end{aligned}\end{align} \]
抛出异常:
  • ValueError - 如果 data_format 既不是"NCDHW"也不是"NDHWC"。

  • ValueError - 如果 input 的通道数未被明确定义。

  • ValueError - 如果 padding 是字符串,既不是"SAME"也不是"VALID"。

  • ValueError - 如果 padding 含有5个二元组,与批尺寸对应维度的值不为0或者与通道对应维度的值不为0。

  • ShapeError - 如果输入不是5-D Tensor。

  • ShapeError - 如果输入和卷积核的维度大小不相同。

  • ShapeError - 如果输入的维度大小与 stride 之差不是2。

  • ShapeError - 如果输出的通道数不能被 groups 整除。

代码示例

import paddle
import paddle.nn as nn

x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)

conv = nn.Conv3D(4, 6, (3, 3, 3))
y_var = conv(x_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 6, 6, 6)

此页内容是否对您有帮助