PaddlePaddle

 paddle.optimizer / Adadelta


Adadelta

class paddle.optimizer. Adadelta ( learning_rate=0.001, epsilon=1.0e-6, rho=0.95, parameters=None, weight_decay=0.01, grad_clip=None, name=None ) [源代码]

注意:此接口不支持稀疏参数更新。

Adadelta优化器,具体细节可参考论文 ADADELTA: AN ADAPTIVE LEARNING RATE METHOD

更新公式如下:

\[\begin{split}E(g_t^2) &= \rho * E(g_{t-1}^2) + (1-\rho) * g^2\\ learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \epsilon ) / ( E(g_t^2) + \epsilon ) }\\ E(dx_t^2) &= \rho * E(dx_{t-1}^2) + (1-\rho) * (-g*learning\_rate)^2\end{split}\]
参数:
  • learning_rate (float|_LRScheduleri, 可选) - 学习率,用于参数更新的计算。可以是一个浮点型值或者一个_LRScheduler类,默认值为0.001

  • epsilon (float, 可选) - 保持数值稳定性的短浮点类型值,默认值为1e-06

  • rho (float, 可选) - 算法中的衰减率,默认值为0.95。

  • parameters (list, 可选) - 指定优化器需要优化的参数。在动态图模式下必须提供该参数;在静态图模式下默认值为None,这时所有的参数都将被优化。

  • weight_decay (float|Tensor, 可选) - 权重衰减系数,是一个float类型或者shape为[1] ,数据类型为float32的Tensor类型。默认值为0.01

  • grad_clip (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: cn_api_fluid_clip_GradientClipByGlobalNormcn_api_fluid_clip_GradientClipByNormcn_api_fluid_clip_GradientClipByValue 。 默认值为None,此时将不进行梯度裁剪。

  • name (str, 可选)- 该参数供开发人员打印调试信息时使用,具体用法请参见 Name ,默认值为None

Adadelta优化器出自 DECOUPLED WEIGHT DECAY REGULARIZATION 论文 <https://arxiv.org/pdf/1711.05101.pdf>,用来解决Adam优化器中L2正则化失效的问题。

代码示例

import paddle

inp = paddle.uniform(min=-0.1, max=0.1, shape=[10, 10], dtype='float32')
linear = paddle.nn.Linear(10, 10)
out = linear(inp)
loss = paddle.mean(out)
adadelta = paddle.optimizer.Adadelta(learning_rate=0.0003, epsilon=1.0e-6, rho=0.95,
        parameters=linear.parameters())
out.backward()
adadelta.step()
adadelta.clear_grad()
step ( )

注意:

1. 该API只在 Dygraph 模式下生效

执行一次优化器并进行参数更新。

返回:None。

代码示例

import paddle
value = paddle.arange(26, dtype='float32')
a = paddle.reshape(value, [2, 13])
linear = paddle.nn.Linear(13, 5)
adadelta = paddle.optimizer.Adadelta(learning_rate=0.0003, epsilon=1.0e-6, rho=0.95,
                            parameters = linear.parameters())
out = linear(a)
out.backward()
adadelta.step()
adadelta.clear_grad()
minimize ( loss, startup_program=None, parameters=None, no_grad_set=None )

为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameters中的Parameters,最小化网络损失值loss。

参数:
  • loss (Tensor) – 需要最小化的损失值变量

  • startup_program (Program, 可选) – 用于初始化parameters中参数的 Program , 默认值为None,此时将使用 default_startup_program

  • parameters (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter

  • no_grad_set (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的集合,默认值为None

返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。在静态图模式下,该返回值可以加入到 Executor.run() 接口的 fetch_list 参数中,若加入,则会重写 use_prune 参数为True,并根据 feedfetch_list 进行剪枝,详见 Executor 的文档。

代码示例

import paddle

inp = paddle.uniform(min=-0.1, max=0.1, shape=[10, 10], dtype='float32')
linear = paddle.nn.Linear(10, 10)
out = linear(inp)
loss = paddle.mean(out)

beta1 = paddle.to_tensor([0.9], dtype="float32")
beta2 = paddle.to_tensor([0.99], dtype="float32")

adadelta = paddle.optimizer.Adadelta(learning_rate=0.0003, epsilon=1.0e-6, rho=0.95,
        parameters=linear.parameters())
out.backward()
adadelta.minimize(loss)
adadelta.clear_grad()
clear_grad ( )

注意:

1. 该API只在 Dygraph 模式下生效

清除需要优化的参数的梯度。

代码示例

import paddle

value = paddle.arange(26, dtype='float32')
a = paddle.reshape(value, [2, 13])
linear = paddle.nn.Linear(13, 5)
optimizer = paddle.optimizer.Adadelta(learning_rate=0.0003, epsilon=1.0e-6, rho=0.95,
                                 parameters=linear.parameters())
out = linear(a)
out.backward()
optimizer.step()
optimizer.clear_grad()
set_lr ( value )

注意:

1. 该API只在 Dygraph 模式下生效

手动设置当前 optimizer 的学习率。当使用_LRScheduler时,无法使用该API手动设置学习率,因为这将导致冲突。

参数:

value (float) - 需要设置的学习率的值。

返回:None

代码示例

import paddle
linear = paddle.nn.Linear(10, 10)

adadelta = paddle.optimizer.Adadelta(weight_decay=0.01,
                             learning_rate=0.1, parameters=linear.parameters())

# set learning rate manually by python float value
lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
for i in range(5):
    adadelta.set_lr(lr_list[i])
    lr = adadelta.get_lr()
    print("current lr is {}".format(lr))
# Print:
#    current lr is 0.2
#    current lr is 0.3
#    current lr is 0.4
#    current lr is 0.5
#    current lr is 0.6
get_lr ( )

注意:

1. 该API只在 Dygraph 模式下生效

获取当前步骤的学习率。当不使用_LRScheduler时,每次调用的返回值都相同,否则返回当前步骤的学习率。

返回:float,当前步骤的学习率。

代码示例

import numpy as np
import paddle
# example1: _LRScheduler is not used, return value is all the same
emb = paddle.nn.Embedding(10, 10, sparse=False)
adadelta = paddle.optimizer.Adadelta(learning_rate=0.001, parameters = emb.parameters(),weight_decay=0.01)
lr = adadelta.get_lr()
print(lr) # 0.001

# example2: PiecewiseDecay is used, return the step learning rate
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
inp = paddle.to_tensor(inp)
out = linear(inp)
loss = paddle.mean(out)

bd = [2, 4, 6, 8]
value = [0.2, 0.4, 0.6, 0.8, 1.0]
scheduler = paddle.optimizer.lr.PiecewiseDecay(bd, value, 0)
adadelta = paddle.optimizer.Adadelta(scheduler,
                       parameters=linear.parameters(),
                       weight_decay=0.01)

# first step: learning rate is 0.2
np.allclose(adadelta.get_lr(), 0.2, rtol=1e-06, atol=0.0) # True

# learning rate for different steps
ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
for i in range(12):
    adadelta.step()
    lr = adadelta.get_lr()
    scheduler.step()
    np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

此页内容是否对您有帮助